yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The physics of entropy and the origin of life | Sean Carroll


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.
  • I think that once you learn about the second law of thermodynamics, it can be a little depressing. You've been told that there's a fundamental feature of reality: that disorder increases, that things just wind down, right? That batteries run out, that cream and coffee mix together, that ice cubes melt. It's kind of a depressing view of the future. How did all of this interestingness come about in the first place?

If the whole thing that reality does is just move closer and closer to complete disorder, then how did something as exquisitely organized as a human being come about? This idea that there's this tension between the organization of things in the Universe and the natural evolution of things became a little bit sharper over the course of the 1800s because that's when we put together this idea that entropy increases all the time.

Things tend to go from orderly to disorderly just because there are many more ways to be disorderly. This is a deep down law of nature. It implies what we call the 'Heat death of the Universe': that all the stuff you see, the engines, the burning stars, the living beings, these all represent systems that are increasing the overall entropy of the Universe. And if you think, which is probably true, that there's a maximum entropy you can reach, a maximum level of disorderliness and chaos, eventually we will get there and all the interestingness in the Universe will be gone.

The Universe will reach what we call an 'equilibrium': a state of maximum chaos and nothing interesting happening anymore. One of the issues with really feeling through the implications of the second law of thermodynamics is that people tend to mix up simple versus complex and orderly versus disorderly. The truth is these are two different axes, two different ways of thinking about something. The increase of entropy says that we go from orderly to disorderly, but it says nothing about simple versus complex.

This is a new scientific question that we are facing right now: 'What is the journey from low entropy to high entropy like and how is it affected by the laws of physics so that the actual path it takes leads to complex structures?' One of the difficulties in figuring out, specifically, how life here on Earth came into being is that it's not just a random sort of complex system. It's a very specific thing.

And life as we know it now involves different aspects, all of which are important. You need replication, right? You need Darwinian evolution. We have DNA. We have a genome that gets replicated, not perfectly, but pretty well. You need compartmentalization. Every cell has a cell wall so you can separate the living cell from the rest of the world. And also you need metabolism, right? You need that fuel, you need that low-entropy energy that we can use to keep ourselves going and then expel to the world in a higher-entropy form.

So, which came first? This is why explaining the beginning of complex structures is always hard, because they all seem to depend on each other. There is a replication-first camp in the origin of life studies literature that says, "Look, clearly the genetic information is necessary to call it life, that must have come first and it must have hooked up to an energy source." But there's also a metabolism-first camp that says, "Look, it doesn't matter if you have information sitting there, if it's not going someplace, if it's not doing anything, if it's not moving around and metabolizing, you can't call it life."

And the nice thing to me about the metabolism-first point of view is that you can kind of see how it might arise out of purely physical, non-biological processes because remember, to maintain its orderliness and its complexity, living beings need to increase the entropy of the Universe, they need to feed off of low-entropy energy. So this was an idea that a number of biologists and geologists had. And on the basis of it, they made predictions.

They said, you know, "Life is not gonna form in some warm pond." This was Darwin's idea, that maybe you just put all the stuff together, all the ingred...

More Articles

View All
Data to justify experimental claims examples | High school biology | Khan Academy
What we have here are a few data analysis questions in a biology context from the New York Regents exam. But these are useful example problems if you’re studying high school biology in general because they might show up in some type of an exam that your t…
Feeling Tired, Irritable, Stressed Out? Try Nature | Short Film Showcase
Do you find yourself longing for the apocalypse? I did. I was looking for a reason to live. Hi! Are you feeling tired, irritable, stressed out? Well, you might consider nature. From the people that brought you “Getting Outside” comes prescription-strengt…
Amy Buechler and Michael Seibel on Founder Coaching and Having Hard Conversations
Alright guys, welcome to the podcast. Thanks Frank, how’s it going? Great! Good! Amy, you are a founder coach. I think a lot of people don’t know what coaching actually is, so maybe you could explain it? Yeah, that’s actually a great question because wha…
Gov Of The Gaps (Mirror)
We’re getting a lot of disease in our town lately, and we don’t know how to stop it. Does anyone have any ideas? “Yes, I have an idea.” “Mr. Scientist, go ahead.” “Yes, I have this theory. You see, that disease is caused by teeny tiny little life forms…
How To Build Wealth With $0 - The Easy Way
What’s up, Graham? It’s guys here. Now, here’s the thing: if you’re already wealthy, it’s easy to find new ways to make money. But if you have nothing to fall back on, it’s not exactly looking so good. It was recently found that just 30% of the poorest A…
Running Your Company by Patrick Collison
So Patrick welcome. So Patrick is the co-founder and CEO of Stripe. He launched the startup, we’re now a pretty big company in 2010, correct? With his brother John. Why should we started working on it full-time in 2010? But it actually your comment just t…