yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The physics of entropy and the origin of life | Sean Carroll


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.
  • I think that once you learn about the second law of thermodynamics, it can be a little depressing. You've been told that there's a fundamental feature of reality: that disorder increases, that things just wind down, right? That batteries run out, that cream and coffee mix together, that ice cubes melt. It's kind of a depressing view of the future. How did all of this interestingness come about in the first place?

If the whole thing that reality does is just move closer and closer to complete disorder, then how did something as exquisitely organized as a human being come about? This idea that there's this tension between the organization of things in the Universe and the natural evolution of things became a little bit sharper over the course of the 1800s because that's when we put together this idea that entropy increases all the time.

Things tend to go from orderly to disorderly just because there are many more ways to be disorderly. This is a deep down law of nature. It implies what we call the 'Heat death of the Universe': that all the stuff you see, the engines, the burning stars, the living beings, these all represent systems that are increasing the overall entropy of the Universe. And if you think, which is probably true, that there's a maximum entropy you can reach, a maximum level of disorderliness and chaos, eventually we will get there and all the interestingness in the Universe will be gone.

The Universe will reach what we call an 'equilibrium': a state of maximum chaos and nothing interesting happening anymore. One of the issues with really feeling through the implications of the second law of thermodynamics is that people tend to mix up simple versus complex and orderly versus disorderly. The truth is these are two different axes, two different ways of thinking about something. The increase of entropy says that we go from orderly to disorderly, but it says nothing about simple versus complex.

This is a new scientific question that we are facing right now: 'What is the journey from low entropy to high entropy like and how is it affected by the laws of physics so that the actual path it takes leads to complex structures?' One of the difficulties in figuring out, specifically, how life here on Earth came into being is that it's not just a random sort of complex system. It's a very specific thing.

And life as we know it now involves different aspects, all of which are important. You need replication, right? You need Darwinian evolution. We have DNA. We have a genome that gets replicated, not perfectly, but pretty well. You need compartmentalization. Every cell has a cell wall so you can separate the living cell from the rest of the world. And also you need metabolism, right? You need that fuel, you need that low-entropy energy that we can use to keep ourselves going and then expel to the world in a higher-entropy form.

So, which came first? This is why explaining the beginning of complex structures is always hard, because they all seem to depend on each other. There is a replication-first camp in the origin of life studies literature that says, "Look, clearly the genetic information is necessary to call it life, that must have come first and it must have hooked up to an energy source." But there's also a metabolism-first camp that says, "Look, it doesn't matter if you have information sitting there, if it's not going someplace, if it's not doing anything, if it's not moving around and metabolizing, you can't call it life."

And the nice thing to me about the metabolism-first point of view is that you can kind of see how it might arise out of purely physical, non-biological processes because remember, to maintain its orderliness and its complexity, living beings need to increase the entropy of the Universe, they need to feed off of low-entropy energy. So this was an idea that a number of biologists and geologists had. And on the basis of it, they made predictions.

They said, you know, "Life is not gonna form in some warm pond." This was Darwin's idea, that maybe you just put all the stuff together, all the ingred...

More Articles

View All
Why Shower Thoughts Are Actually Deep
Everyone loves shower thoughts. It’s the most successful format on this channel. There’s an entire subreddit dedicated to shower thoughts and thousands of TikToks daily talking about profound ideas, paradoxes, and concepts; things that you need to think a…
Tracy Young Speaks at Female Founders Conference 2015
Hi everyone! It’s an honor to be here today. My name is Tracy Young. I’m one of the co-founders of PlanGrid. So, I need your help picturing 2010. I’m a construction engineer, new graduate with a construction management degree, and I’m on my first constru…
The 'Great Rotation' is Here.
For more than two years, the primary theme that we’ve seen in the stock market has been a small selection of large cap technology names leveraged to AI and semiconductors driving the stock market forward: Apple, Amazon, Nvidia, Meta, Google, Microsoft, Te…
How We Can Keep Plastics Out of Our Ocean | National Geographic
8 million metric tons of plastic trash enters the sea from land every year; the equivalent of five plastic bags filled with trash for every foot of coastline in the world. Across our ocean, plastic trash blows into circulation, dispersed almost everywhere…
The 2023 Recession Keeps Getting Worse
What’s up Grandma? It’s guys here. So while everyone is busy watching Tesla drop the price of their cars by up to 20%, we’ve got another issue quietly brewing behind the scenes. That’s the fact that the United States is quickly running out of money, with …
Properties of the equilibrium constant | Equilibrium | AP Chemistry | Khan Academy
An equilibrium constant has one value for a particular reaction at a certain temperature. For example, for this reaction, we have oxalic acid turning into two H plus ions and the oxalate anion. The equilibrium constant Kc for this reaction is equal to 3.8…