yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain rule with the power rule


3m read
·Nov 11, 2024

So we've got the function ( f(x) = (2x^3 + 5x^2 - 7)^{88} ) and we want to find the derivative of our function ( f ) with respect to ( x ). Now, the key here is to realize that this function can be viewed as a composition of two functions. How do we do that? Well, let me diagram it out.

So let's say we want to start with—I'll do it down here so I have some space. We're going to start with an ( x ), and what's the first thing that we would do if you were just trying to evaluate it given some ( x )? Well, first, you would take ( 2 \cdot x^3 + 5 \cdot x^2 - 7 ).

So what if we imagined a function here that just did that first part, that just evaluated ( 2x^3 + 5x^2 - 7 ) for your ( x )? Let's call that the function ( U ). Whatever you input into that function ( U ), you're going to get ( 2 \cdot ) (that input) to the 3rd power ( + 5 \cdot ) (that input) to the 2nd power ( - 7 ).

And so when you do that, when you input with an ( x ), what do you output? What do you output here? Well, you're going to output ( U(x) ), which is equal to ( 2x^3 + 5x^2 - 7 ).

Now, what's the next thing you're doing? You're not done evaluating ( f(x) ). You would then take that value and then input it into another function. You would then take the 88th power of that value. So then we will take that and input it into another function—let's call that function ( V ).

And that function, whatever input you give it, and I'm using these squares just to say whatever input goes into that function, you're going to take it to the 88th power. And so in this case, what do you end up with? Well, you end up with ( V(U(x)) ) or you could view this as ( V(2x^3 + 5x^2 - 7) ) or you could view this as ( (2x^3 + 5x^2 - 7)^{88} ).

And that's what ( f(x) ) is. As we just saw, ( f(x) ) can be viewed as the composition of ( V ) and ( U ). This is ( f(x) ).

So if we write ( f(x) ) being equal to ( V(U(x)) ), then we see very clearly that the chain rule is very useful here. The chain rule tells us that ( f'(x) ) is going to be the derivative of ( V ) with respect to ( U ), so it's going to be ( V'(U(x)) ) times the derivative of ( U ) with respect to ( x ), so ( U'(x) ).

So we know a few things already, so let me just write things down very clearly. We know that ( U(x) = 2x^3 + 5x^2 - 7 ). What is ( U'(x) )? Well, here we're just going to use some derivative properties and the power rule.

( 3 \cdot 2 = 6 ), ( x^{3-1} = x^2 ), so ( U'(x) = 6x^2 ). ( 2 \cdot 5 = 10 ), take one off that exponent; it's going to be ( 10x ). And the derivative of a constant is just zero, so we can just ignore that. So that's ( U'(x) ).

Now, we know that ( V )—if we input an ( x ) into ( V )—so ( V(x) = x^{88} ). ( V'(x) )? Well, we just use the power rule again; that's ( 88x^{87} ).

So ( V'(U(x)) ) — if you were to input ( U(x) ) into ( V' ) — well, it's going to be equal to ( 88 \cdot (U(x))^{87} ). Whatever you input into ( V' ), you're going to take it to the 87th power and multiply it by 88.

So ( U(x) ) and that's the same thing; this is equal to ( 88 \times ) (this entire expression) ( U(x) = 2x^3 + 5x^2 - 7 ).

So there you have it: ( f'(x) = V'(U(x)) ) is all of this business, so it's equal to ( 88 \cdot (2x^3 + 5x^2 - 7)^{87} \times U'(x) ).

We figured out ( U'(x) ), so times ( (6x^2 + 10x) ). Now as you get more practice with the chain rule, you'll recognize this faster and actually, you could do it in your head. You’ll say, "Okay, I’m going to take the derivative of the outside function"—the blue function you could say—with respect to what I have on the inside.

So if I was taking the derivative of ( x^{88} ), it would be ( 88x^{87} ) if that’s with respect to ( x ). But if I'm taking the derivative of this with respect to the inside, well, where I had the ( x )s before, I would just have this ( U(x) ), so it's going to be ( 88 \times (U(x))^{87} ) and I multiply that times the derivative of the inside which is ( (6x^2 + 10x) ).

More Articles

View All
3 books to read to become successful!
Three standout books that really have an impression on me. One by Tony Robbins, it’s called Life. It’s such an easy-to-read book about every single kind of advancement in the medical field. Easy to understand everything for longevity, anti-aging, how to …
Eaten by Jaws and Big Wave Surfing| Edge of the Unknown on Disney+
JUSTINE DUPONT (VOICEOVER): [SPEAKING FRENCH] FRED DAVID: Four years ago, we moved to Nazaré. And we decided to focus on big wave surfing. Every big wave is different. But I think Nazaré is probably the best place to learn how to deal with big waves. MA…
7 Huge Stocks You Need to Watch in 2024
In 2023, the S&P 500 rose a whopping 24%. But did you know that just seven stocks made up 60% of that gain? These companies are dubbed the Magnificent 7, and in this video, we’re going to explore how they’re currently breaking the stock market and whe…
Equations with rational expressions (example 2) | Mathematics III | High School Math | Khan Academy
So we have a nice little equation here that has some rational expressions in it. And like always, pause the video and see if you can figure out which X’s satisfy this equation. Alright, let’s work through it together. Now, when I see things in the denomi…
From Startup to Scaleup | Sam Altman and Reid Hoffman
Thank you all for coming here. You’re, um, uh, everyone here is an important part of our, uh, of our joint Network. Um, this event started with a, um, kind of a funny set of accidents. First, Sam had this brilliant idea of teaching a startup class at Stan…
Multiplying two 2-digit numbers using partial products
In a previous video, we figured out a way to multiply a two-digit number times a one-digit number. What we did is we broke up the two-digit numbers in terms of its place value. So, the three here in the tens place, that’s three tens; this is seven ones. …