yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain rule with the power rule


3m read
·Nov 11, 2024

So we've got the function ( f(x) = (2x^3 + 5x^2 - 7)^{88} ) and we want to find the derivative of our function ( f ) with respect to ( x ). Now, the key here is to realize that this function can be viewed as a composition of two functions. How do we do that? Well, let me diagram it out.

So let's say we want to start with—I'll do it down here so I have some space. We're going to start with an ( x ), and what's the first thing that we would do if you were just trying to evaluate it given some ( x )? Well, first, you would take ( 2 \cdot x^3 + 5 \cdot x^2 - 7 ).

So what if we imagined a function here that just did that first part, that just evaluated ( 2x^3 + 5x^2 - 7 ) for your ( x )? Let's call that the function ( U ). Whatever you input into that function ( U ), you're going to get ( 2 \cdot ) (that input) to the 3rd power ( + 5 \cdot ) (that input) to the 2nd power ( - 7 ).

And so when you do that, when you input with an ( x ), what do you output? What do you output here? Well, you're going to output ( U(x) ), which is equal to ( 2x^3 + 5x^2 - 7 ).

Now, what's the next thing you're doing? You're not done evaluating ( f(x) ). You would then take that value and then input it into another function. You would then take the 88th power of that value. So then we will take that and input it into another function—let's call that function ( V ).

And that function, whatever input you give it, and I'm using these squares just to say whatever input goes into that function, you're going to take it to the 88th power. And so in this case, what do you end up with? Well, you end up with ( V(U(x)) ) or you could view this as ( V(2x^3 + 5x^2 - 7) ) or you could view this as ( (2x^3 + 5x^2 - 7)^{88} ).

And that's what ( f(x) ) is. As we just saw, ( f(x) ) can be viewed as the composition of ( V ) and ( U ). This is ( f(x) ).

So if we write ( f(x) ) being equal to ( V(U(x)) ), then we see very clearly that the chain rule is very useful here. The chain rule tells us that ( f'(x) ) is going to be the derivative of ( V ) with respect to ( U ), so it's going to be ( V'(U(x)) ) times the derivative of ( U ) with respect to ( x ), so ( U'(x) ).

So we know a few things already, so let me just write things down very clearly. We know that ( U(x) = 2x^3 + 5x^2 - 7 ). What is ( U'(x) )? Well, here we're just going to use some derivative properties and the power rule.

( 3 \cdot 2 = 6 ), ( x^{3-1} = x^2 ), so ( U'(x) = 6x^2 ). ( 2 \cdot 5 = 10 ), take one off that exponent; it's going to be ( 10x ). And the derivative of a constant is just zero, so we can just ignore that. So that's ( U'(x) ).

Now, we know that ( V )—if we input an ( x ) into ( V )—so ( V(x) = x^{88} ). ( V'(x) )? Well, we just use the power rule again; that's ( 88x^{87} ).

So ( V'(U(x)) ) — if you were to input ( U(x) ) into ( V' ) — well, it's going to be equal to ( 88 \cdot (U(x))^{87} ). Whatever you input into ( V' ), you're going to take it to the 87th power and multiply it by 88.

So ( U(x) ) and that's the same thing; this is equal to ( 88 \times ) (this entire expression) ( U(x) = 2x^3 + 5x^2 - 7 ).

So there you have it: ( f'(x) = V'(U(x)) ) is all of this business, so it's equal to ( 88 \cdot (2x^3 + 5x^2 - 7)^{87} \times U'(x) ).

We figured out ( U'(x) ), so times ( (6x^2 + 10x) ). Now as you get more practice with the chain rule, you'll recognize this faster and actually, you could do it in your head. You’ll say, "Okay, I’m going to take the derivative of the outside function"—the blue function you could say—with respect to what I have on the inside.

So if I was taking the derivative of ( x^{88} ), it would be ( 88x^{87} ) if that’s with respect to ( x ). But if I'm taking the derivative of this with respect to the inside, well, where I had the ( x )s before, I would just have this ( U(x) ), so it's going to be ( 88 \times (U(x))^{87} ) and I multiply that times the derivative of the inside which is ( (6x^2 + 10x) ).

More Articles

View All
How to buy and sell private jets!
What’s happening, guys? It’s Max with Bizam Media. I’m at the NBAA base in 2023. I’m with Steve Bano, president and CEO of the jet business. You know, people tell me I’m the Steve, I’m the Steve of the United States. I don’t have a private jet in my offic…
Meta VS Apple: What Their Battle Means For AI Startups
I think Apple doesn’t want the mobile battle to end. Yeah, I think Apple wants AI to perhaps be the reason why we have another 10-year phone upgrade cycle, and as long as the mobile battle is going, Apple’s got an advantage. All right, welcome to Dalton …
Which Shape CUTS BEST? (Weed Eater Line at 100,000 Frames Per Second) - Smarter Every Day 238
My name is Destin. This is Smarter Every Day. I did a video previously on this channel about how a weed eater line breaks when you go up against something like, I don’t know, a chain link fence or something like that. Aw, that’s awesome. That’s awesome. …
The Upcoming 2021 Real Estate Collapse Explained
What’s up you guys, it’s Graham here. So today we’re literally going to be talking about my favorite topic in the entire world. And I know you think this might be a setup for me to say, “And that topic is asking you to smash that like button for the YouTu…
Guided meditation for high school students
Welcome and thanks for joining me on this, let’s call it a voyage of the mind. So before we begin, posture and breathing make a big difference in meditation. So if you’re not already on a nice firm chair with your back straight, pause this recording and g…
American attitudes about government and politics | US government and civics | Khan Academy
What we’re going to do in this video is think about how the core beliefs of U.S. citizens impact their views on the role of government. What I’m going to do is talk about a few core beliefs that are often associated with the United States. But take it wit…