yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain rule with the power rule


3m read
·Nov 11, 2024

So we've got the function ( f(x) = (2x^3 + 5x^2 - 7)^{88} ) and we want to find the derivative of our function ( f ) with respect to ( x ). Now, the key here is to realize that this function can be viewed as a composition of two functions. How do we do that? Well, let me diagram it out.

So let's say we want to start with—I'll do it down here so I have some space. We're going to start with an ( x ), and what's the first thing that we would do if you were just trying to evaluate it given some ( x )? Well, first, you would take ( 2 \cdot x^3 + 5 \cdot x^2 - 7 ).

So what if we imagined a function here that just did that first part, that just evaluated ( 2x^3 + 5x^2 - 7 ) for your ( x )? Let's call that the function ( U ). Whatever you input into that function ( U ), you're going to get ( 2 \cdot ) (that input) to the 3rd power ( + 5 \cdot ) (that input) to the 2nd power ( - 7 ).

And so when you do that, when you input with an ( x ), what do you output? What do you output here? Well, you're going to output ( U(x) ), which is equal to ( 2x^3 + 5x^2 - 7 ).

Now, what's the next thing you're doing? You're not done evaluating ( f(x) ). You would then take that value and then input it into another function. You would then take the 88th power of that value. So then we will take that and input it into another function—let's call that function ( V ).

And that function, whatever input you give it, and I'm using these squares just to say whatever input goes into that function, you're going to take it to the 88th power. And so in this case, what do you end up with? Well, you end up with ( V(U(x)) ) or you could view this as ( V(2x^3 + 5x^2 - 7) ) or you could view this as ( (2x^3 + 5x^2 - 7)^{88} ).

And that's what ( f(x) ) is. As we just saw, ( f(x) ) can be viewed as the composition of ( V ) and ( U ). This is ( f(x) ).

So if we write ( f(x) ) being equal to ( V(U(x)) ), then we see very clearly that the chain rule is very useful here. The chain rule tells us that ( f'(x) ) is going to be the derivative of ( V ) with respect to ( U ), so it's going to be ( V'(U(x)) ) times the derivative of ( U ) with respect to ( x ), so ( U'(x) ).

So we know a few things already, so let me just write things down very clearly. We know that ( U(x) = 2x^3 + 5x^2 - 7 ). What is ( U'(x) )? Well, here we're just going to use some derivative properties and the power rule.

( 3 \cdot 2 = 6 ), ( x^{3-1} = x^2 ), so ( U'(x) = 6x^2 ). ( 2 \cdot 5 = 10 ), take one off that exponent; it's going to be ( 10x ). And the derivative of a constant is just zero, so we can just ignore that. So that's ( U'(x) ).

Now, we know that ( V )—if we input an ( x ) into ( V )—so ( V(x) = x^{88} ). ( V'(x) )? Well, we just use the power rule again; that's ( 88x^{87} ).

So ( V'(U(x)) ) — if you were to input ( U(x) ) into ( V' ) — well, it's going to be equal to ( 88 \cdot (U(x))^{87} ). Whatever you input into ( V' ), you're going to take it to the 87th power and multiply it by 88.

So ( U(x) ) and that's the same thing; this is equal to ( 88 \times ) (this entire expression) ( U(x) = 2x^3 + 5x^2 - 7 ).

So there you have it: ( f'(x) = V'(U(x)) ) is all of this business, so it's equal to ( 88 \cdot (2x^3 + 5x^2 - 7)^{87} \times U'(x) ).

We figured out ( U'(x) ), so times ( (6x^2 + 10x) ). Now as you get more practice with the chain rule, you'll recognize this faster and actually, you could do it in your head. You’ll say, "Okay, I’m going to take the derivative of the outside function"—the blue function you could say—with respect to what I have on the inside.

So if I was taking the derivative of ( x^{88} ), it would be ( 88x^{87} ) if that’s with respect to ( x ). But if I'm taking the derivative of this with respect to the inside, well, where I had the ( x )s before, I would just have this ( U(x) ), so it's going to be ( 88 \times (U(x))^{87} ) and I multiply that times the derivative of the inside which is ( (6x^2 + 10x) ).

More Articles

View All
We Can’t Prove Most Theorems with Known Physics
The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle’s theorem, and it also comes out of Turing’s proof of what is and is not computable. These things that are not computable vastly outnumber the …
Why I have 11 Credit Cards…
What’s up you guys? It’s Graham here. So how ridiculous is this? I now have 11 credit cards! Now I was perfectly happy and perfectly content having 10 credit cards. I really didn’t need another one. But I saw the Credit Shifu, who uploaded a video the oth…
Escaping a Venezuelan Prison | Locked Up Abroad
Enjoy your first day release. As I walked through the doors, I couldn’t believe it. It wasn’t just some crazy dream. I might actually get away with this. My stomach’s churning over, tying itself up in knots. I got on the bus. I’m praying that I’m never …
Stop Trying to Get It And You'll Have It | The Backwards Law
What if we’d try not to think of a pink elephant? This probably won’t work. Because as soon as the pink elephant appears in our minds, it’s impossible to get rid of it by consciously not thinking about it. And the more we try to get rid of it, the more it…
Shower Thoughts: Space Is Weird
The universe is a mind-boggling place. Actually, I’m not even sure I can call it a place. NASA says the universe is everything, but what they really mean is that it contains everything— all of space, energy, time, and matter, like you and me. But there’s …
Identifying unit fractions word problem | Math | 3rd grade | Khan Academy
This question says Vera’s dinner plate is divided into three equal size sections. Vera puts all her broccoli in one section, and then we’re asked what fraction of Vera’s plate has broccoli. Okay, so we have a plate with three equal size sections, and we …