yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Chain rule with the power rule


3m read
·Nov 11, 2024

So we've got the function ( f(x) = (2x^3 + 5x^2 - 7)^{88} ) and we want to find the derivative of our function ( f ) with respect to ( x ). Now, the key here is to realize that this function can be viewed as a composition of two functions. How do we do that? Well, let me diagram it out.

So let's say we want to start with—I'll do it down here so I have some space. We're going to start with an ( x ), and what's the first thing that we would do if you were just trying to evaluate it given some ( x )? Well, first, you would take ( 2 \cdot x^3 + 5 \cdot x^2 - 7 ).

So what if we imagined a function here that just did that first part, that just evaluated ( 2x^3 + 5x^2 - 7 ) for your ( x )? Let's call that the function ( U ). Whatever you input into that function ( U ), you're going to get ( 2 \cdot ) (that input) to the 3rd power ( + 5 \cdot ) (that input) to the 2nd power ( - 7 ).

And so when you do that, when you input with an ( x ), what do you output? What do you output here? Well, you're going to output ( U(x) ), which is equal to ( 2x^3 + 5x^2 - 7 ).

Now, what's the next thing you're doing? You're not done evaluating ( f(x) ). You would then take that value and then input it into another function. You would then take the 88th power of that value. So then we will take that and input it into another function—let's call that function ( V ).

And that function, whatever input you give it, and I'm using these squares just to say whatever input goes into that function, you're going to take it to the 88th power. And so in this case, what do you end up with? Well, you end up with ( V(U(x)) ) or you could view this as ( V(2x^3 + 5x^2 - 7) ) or you could view this as ( (2x^3 + 5x^2 - 7)^{88} ).

And that's what ( f(x) ) is. As we just saw, ( f(x) ) can be viewed as the composition of ( V ) and ( U ). This is ( f(x) ).

So if we write ( f(x) ) being equal to ( V(U(x)) ), then we see very clearly that the chain rule is very useful here. The chain rule tells us that ( f'(x) ) is going to be the derivative of ( V ) with respect to ( U ), so it's going to be ( V'(U(x)) ) times the derivative of ( U ) with respect to ( x ), so ( U'(x) ).

So we know a few things already, so let me just write things down very clearly. We know that ( U(x) = 2x^3 + 5x^2 - 7 ). What is ( U'(x) )? Well, here we're just going to use some derivative properties and the power rule.

( 3 \cdot 2 = 6 ), ( x^{3-1} = x^2 ), so ( U'(x) = 6x^2 ). ( 2 \cdot 5 = 10 ), take one off that exponent; it's going to be ( 10x ). And the derivative of a constant is just zero, so we can just ignore that. So that's ( U'(x) ).

Now, we know that ( V )—if we input an ( x ) into ( V )—so ( V(x) = x^{88} ). ( V'(x) )? Well, we just use the power rule again; that's ( 88x^{87} ).

So ( V'(U(x)) ) — if you were to input ( U(x) ) into ( V' ) — well, it's going to be equal to ( 88 \cdot (U(x))^{87} ). Whatever you input into ( V' ), you're going to take it to the 87th power and multiply it by 88.

So ( U(x) ) and that's the same thing; this is equal to ( 88 \times ) (this entire expression) ( U(x) = 2x^3 + 5x^2 - 7 ).

So there you have it: ( f'(x) = V'(U(x)) ) is all of this business, so it's equal to ( 88 \cdot (2x^3 + 5x^2 - 7)^{87} \times U'(x) ).

We figured out ( U'(x) ), so times ( (6x^2 + 10x) ). Now as you get more practice with the chain rule, you'll recognize this faster and actually, you could do it in your head. You’ll say, "Okay, I’m going to take the derivative of the outside function"—the blue function you could say—with respect to what I have on the inside.

So if I was taking the derivative of ( x^{88} ), it would be ( 88x^{87} ) if that’s with respect to ( x ). But if I'm taking the derivative of this with respect to the inside, well, where I had the ( x )s before, I would just have this ( U(x) ), so it's going to be ( 88 \times (U(x))^{87} ) and I multiply that times the derivative of the inside which is ( (6x^2 + 10x) ).

More Articles

View All
Crazy experiences while selling private jets!
When you’re selling a jet for a company, that company is either moving up to a bigger, newer jet, or the company’s having problems and they’re selling the jet and they’re getting out of the business of operating their own corporate jet. If it’s the latte…
Curvature formula, part 5
So let’s sum up where we are so far. We’re looking at this formula and trying to understand why it corresponds to curvature, why it tells you how much a curve actually curves. The first thing we did is we noticed that this numerator corresponds to a cert…
Changes in POV and dramatic irony | Reading | Khan Academy
Hello readers! Today I’d like to talk about differences in point of view in literature. When we analyze the perspectives of storytellers, whether that’s a point of view character, an omniscient narrator, or a narrator that attaches closely to multiple per…
A Mexican Wolf Pup’s Journey into the Wild | Podcast | Overheard at National Geographic
Foreign [Music] This is what it sounds like to explore New Mexico’s Gila Wilderness on horseback. On a recent assignment for National Geographic, I got to venture deep into the Gila with a photographer, podcast producer, and a backcountry guide. The Gila …
All right, this is Jeff from Wacky Gamer. You guys had a bunch of awesome nerd board suggestions. I’m answering them today by asking: the cosplayer Adam West versus Christopher Reeve. Adam West. Adam West. And why? Christopher Reeve? Uh, Adam West! Adam …
How much money I made from 1M views- How to make money on Youtube
You probably saw YouTubers buying luxury cars, designer clothing, and expensive houses. And I’m pretty sure that you have at least for once wondered how much do these YouTubers make. So in this video, I’m gonna show you exact data of how much money I made…