yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limit of (1-cos(x))/x as x approaches 0 | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we want to do in this video is figure out what the limit as ( x ) approaches ( z ) of ( \frac{1 - \cos(x)}{x} ) is equal to. We're going to assume we know one thing ahead of time: we're going to assume we know that the limit as ( x ) approaches ( 0 ) of ( \frac{\sin(x)}{x} ) is equal to ( 1 ). I'm not going to reprove this in this video, but we have a whole other video dedicated to proving this famous limit, and we do it using the squeeze or the sandwich theorem.

So let's see if we can work this out. The first thing we're going to do is algebraically manipulate this expression a little bit. What I'm going to do is I'm going to multiply both the numerator and the denominator by ( 1 + \cos(x) ). So, times the denominator, I have to do the same thing, ( 1 + \cos(x) ). I'm not changing the value of the expression; this is just multiplying it by one.

But what does that do for us? Well, I can rewrite the whole thing as the limit as ( x ) approaches zero of ( (1 - \cos(x))(1 + \cos(x)) ). Well, that is just going to be, let me do this in another color, that is going to be ( 1^2 - \cos^2(x) ), which is just ( \sin^2(x) ) by the difference of squares.

In the denominator, I am going to have ( x(1 + \cos(x)) ). Now, what is ( 1 - \cos^2(x) )? Well, this comes straight out of the Pythagorean identity; this is the same thing as ( \sin^2(x) ). So I can rewrite all of this as being equal to the limit as ( x ) approaches zero.

And let me rewrite this as, instead of ( \sin^2(x) ), that's the same thing as ( \sin(x) \cdot \sin(x) ). Let me write it that way: ( \sin(x) \cdot \sin(x) ). So I'll take the first ( \sin(x) ) and put it over this ( x ), so ( \frac{\sin(x)}{x} ) times the second ( \sin(x) ), let's say this one over ( 1 + \cos(x) ).

So ( \frac{\sin(x)}{1 + \cos(x)} ). All I've done is leverage a trigonometric identity and done a little bit of algebraic manipulation. Well, here the limit of the product of these two expressions is going to be the same thing as the product of the limits, so I can rewrite this as being equal to the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} ) times the limit as ( x ) approaches zero of ( \frac{\sin(x)}{1 + \cos(x)} ).

Now, we said going into this video that we're going to assume that we know what this is. We prove it in other videos. What is the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} )? Well, that is equal to ( 1 ). So this whole limit is just going to be dependent on whatever this is equal to.

Well, this is pretty straightforward. Here, as ( x ) approaches zero, the numerator is approaching zero, ( \sin(0) ) is ( 0 ), and the denominator is approaching ( 1 + \cos(0) ), which is ( 2 ). So this is approaching ( \frac{0}{2} ) or just ( 0 ).

So that's approaching ( 0 ). ( 1 \cdot 0 ), well this is just going to be equal to ( 0 ), and we're done.

Using that fact and a little bit of trig identities and a little bit of algebraic manipulation, we were able to show that our original limit, the limit as ( x ) approaches ( 0 ) of ( \frac{1 - \cos(x)}{x} ) is equal to ( z ). I encourage you to graph it; you will see that that makes sense from a graphical point of view as well.

More Articles

View All
The Jet Business Bloomberg Editorial October 2013
People drive by; they see this Airbus corporate jet in the window. They catch their attention, and they come in to see what this place is. It is the most global market of any industry. Africa is a big market. Asia is a big market. London was a location wh…
Light Painting With a Frisbee - Pre-Smarter Every Day
Hey, it’s me, Destin. We like to do a lot of weird things with our cameras. So, one thing I was going to show you is how to do some real neat things with open-shutter photography. Basically, you open the shutter for an extended period of time, and then yo…
15 Rules To Win At Life (Part 2)
In part one we published last week, we took a look at the essentials. In this one, we’re going a lot more tactical with mindsets that you can incorporate immediately into your life. After analyzing some of the most successful individuals in the world, we …
Le Châtelier's principle | Reaction rates and equilibrium | High school chemistry | Khan Academy
Let’s imagine a reaction that is in equilibrium: A plus B can react to form C plus D, or you could go the other way around. C plus D could react to form A plus B. We assume that they’ve all been hanging around long enough for this to be in equilibrium, so…
Safari Live - Day 242 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Is why the inclement ride is such a firm favorite. Kito looks ready for a fight. This is still insane. Good afternoon, ever…
Dark Web: The Unseen Side of The Internet
The Internet has changed everything, from the way we work to the way we play to the way we live. It seems that there’s a corner of the internet for everyone; despite what interests you have, despite what your beliefs are, there’s someone or something out …