yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limit of (1-cos(x))/x as x approaches 0 | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we want to do in this video is figure out what the limit as ( x ) approaches ( z ) of ( \frac{1 - \cos(x)}{x} ) is equal to. We're going to assume we know one thing ahead of time: we're going to assume we know that the limit as ( x ) approaches ( 0 ) of ( \frac{\sin(x)}{x} ) is equal to ( 1 ). I'm not going to reprove this in this video, but we have a whole other video dedicated to proving this famous limit, and we do it using the squeeze or the sandwich theorem.

So let's see if we can work this out. The first thing we're going to do is algebraically manipulate this expression a little bit. What I'm going to do is I'm going to multiply both the numerator and the denominator by ( 1 + \cos(x) ). So, times the denominator, I have to do the same thing, ( 1 + \cos(x) ). I'm not changing the value of the expression; this is just multiplying it by one.

But what does that do for us? Well, I can rewrite the whole thing as the limit as ( x ) approaches zero of ( (1 - \cos(x))(1 + \cos(x)) ). Well, that is just going to be, let me do this in another color, that is going to be ( 1^2 - \cos^2(x) ), which is just ( \sin^2(x) ) by the difference of squares.

In the denominator, I am going to have ( x(1 + \cos(x)) ). Now, what is ( 1 - \cos^2(x) )? Well, this comes straight out of the Pythagorean identity; this is the same thing as ( \sin^2(x) ). So I can rewrite all of this as being equal to the limit as ( x ) approaches zero.

And let me rewrite this as, instead of ( \sin^2(x) ), that's the same thing as ( \sin(x) \cdot \sin(x) ). Let me write it that way: ( \sin(x) \cdot \sin(x) ). So I'll take the first ( \sin(x) ) and put it over this ( x ), so ( \frac{\sin(x)}{x} ) times the second ( \sin(x) ), let's say this one over ( 1 + \cos(x) ).

So ( \frac{\sin(x)}{1 + \cos(x)} ). All I've done is leverage a trigonometric identity and done a little bit of algebraic manipulation. Well, here the limit of the product of these two expressions is going to be the same thing as the product of the limits, so I can rewrite this as being equal to the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} ) times the limit as ( x ) approaches zero of ( \frac{\sin(x)}{1 + \cos(x)} ).

Now, we said going into this video that we're going to assume that we know what this is. We prove it in other videos. What is the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} )? Well, that is equal to ( 1 ). So this whole limit is just going to be dependent on whatever this is equal to.

Well, this is pretty straightforward. Here, as ( x ) approaches zero, the numerator is approaching zero, ( \sin(0) ) is ( 0 ), and the denominator is approaching ( 1 + \cos(0) ), which is ( 2 ). So this is approaching ( \frac{0}{2} ) or just ( 0 ).

So that's approaching ( 0 ). ( 1 \cdot 0 ), well this is just going to be equal to ( 0 ), and we're done.

Using that fact and a little bit of trig identities and a little bit of algebraic manipulation, we were able to show that our original limit, the limit as ( x ) approaches ( 0 ) of ( \frac{1 - \cos(x)}{x} ) is equal to ( z ). I encourage you to graph it; you will see that that makes sense from a graphical point of view as well.

More Articles

View All
Darkness Falls on Terlingua | Badlands, Texas
I’m the sheriff of Brewster County, the largest county in the state of Texas. It covers some 6,198 square miles. We have several communities; they all have different thoughts and different attitudes. Especially in Terlingua, we had a crime. We had a guy …
Stunning Footage: Epic Animal Migrations in Yellowstone | National Geographic
[Music] The greater Yellowstone ecosystem has some of the most incredible Wildlife migrations in the [Music] world. We have the nine major elk migrations radiating out of the national parks and Wilderness areas every year. The famous 120-mile Pronghorn mi…
What it’s like to watch a Total Solar Eclipse
It’s August 21st, 2017, the day of the total solar eclipse. I’m in Madras, Oregon. The skies are clear. My sky tracker, it’s meant to move the camera with the sky, so it compensates for the Earth’s rotation. That should help me keep the sun in shot as the…
JERRY BLOOP REVIEWS: MGS Peacewalker, Alpha Protocol, Crackdown 2, Dragon Quest IX
Shiny Vsauce and the first episode of uninformed video game reviews. A lot of people commented on the fact that Jerry Bloob has a pillow underneath his sweatshirt. Why? Well, he actually has a very rare medical condition that leaves his nipples razor-shar…
Change in centripetal acceleration from change in linear velocity and radius: Worked examples
We are told that a van drives around a circular curve of radius r with linear speed v. On a second curve of the same radius, the van has linear speed one third v. You could view linear speed as the magnitude of your linear velocity. How does the magnitud…
Solar eclipses | The Earth-sun-moon system | Middle school Earth and space science | Khan Academy
Have you ever been minding your own business, enjoying the sun, when someone steps in front of you and blocks your sunlight? This is pretty much what happens during a solar eclipse, except on a planetary scale. As Earth revolves around the sun, the moon r…