yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limit of (1-cos(x))/x as x approaches 0 | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we want to do in this video is figure out what the limit as ( x ) approaches ( z ) of ( \frac{1 - \cos(x)}{x} ) is equal to. We're going to assume we know one thing ahead of time: we're going to assume we know that the limit as ( x ) approaches ( 0 ) of ( \frac{\sin(x)}{x} ) is equal to ( 1 ). I'm not going to reprove this in this video, but we have a whole other video dedicated to proving this famous limit, and we do it using the squeeze or the sandwich theorem.

So let's see if we can work this out. The first thing we're going to do is algebraically manipulate this expression a little bit. What I'm going to do is I'm going to multiply both the numerator and the denominator by ( 1 + \cos(x) ). So, times the denominator, I have to do the same thing, ( 1 + \cos(x) ). I'm not changing the value of the expression; this is just multiplying it by one.

But what does that do for us? Well, I can rewrite the whole thing as the limit as ( x ) approaches zero of ( (1 - \cos(x))(1 + \cos(x)) ). Well, that is just going to be, let me do this in another color, that is going to be ( 1^2 - \cos^2(x) ), which is just ( \sin^2(x) ) by the difference of squares.

In the denominator, I am going to have ( x(1 + \cos(x)) ). Now, what is ( 1 - \cos^2(x) )? Well, this comes straight out of the Pythagorean identity; this is the same thing as ( \sin^2(x) ). So I can rewrite all of this as being equal to the limit as ( x ) approaches zero.

And let me rewrite this as, instead of ( \sin^2(x) ), that's the same thing as ( \sin(x) \cdot \sin(x) ). Let me write it that way: ( \sin(x) \cdot \sin(x) ). So I'll take the first ( \sin(x) ) and put it over this ( x ), so ( \frac{\sin(x)}{x} ) times the second ( \sin(x) ), let's say this one over ( 1 + \cos(x) ).

So ( \frac{\sin(x)}{1 + \cos(x)} ). All I've done is leverage a trigonometric identity and done a little bit of algebraic manipulation. Well, here the limit of the product of these two expressions is going to be the same thing as the product of the limits, so I can rewrite this as being equal to the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} ) times the limit as ( x ) approaches zero of ( \frac{\sin(x)}{1 + \cos(x)} ).

Now, we said going into this video that we're going to assume that we know what this is. We prove it in other videos. What is the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} )? Well, that is equal to ( 1 ). So this whole limit is just going to be dependent on whatever this is equal to.

Well, this is pretty straightforward. Here, as ( x ) approaches zero, the numerator is approaching zero, ( \sin(0) ) is ( 0 ), and the denominator is approaching ( 1 + \cos(0) ), which is ( 2 ). So this is approaching ( \frac{0}{2} ) or just ( 0 ).

So that's approaching ( 0 ). ( 1 \cdot 0 ), well this is just going to be equal to ( 0 ), and we're done.

Using that fact and a little bit of trig identities and a little bit of algebraic manipulation, we were able to show that our original limit, the limit as ( x ) approaches ( 0 ) of ( \frac{1 - \cos(x)}{x} ) is equal to ( z ). I encourage you to graph it; you will see that that makes sense from a graphical point of view as well.

More Articles

View All
Khan for Educators: Where do I go from here?
Congratulations on completing Khan for Educator’s initial course! Your efforts to grow your professional learning inspire all of us at Khan Academy. While this course has come to an end, Khan Academy offers other communication channels and opportunities …
Ron Howard on Science and Technology | Breakthrough
Science is everywhere, and science and technology is moving at such a pace that it’s a huge challenge to keep up with it. It’s therefore all the more dynamic, all the more fascinating to try to capture a moment, understand it now, have it there for the fu…
The Closer You Are to the Truth, the More Silent You Become Inside
One of the tweets that I put out a while back was: “The closer you get to the truth, the more silent you are inside.” We intuitively know this. When someone is blabbing too much, that person talks too much at the party—the court jester. You know they’re n…
Warren Buffett's BIGGEST Investment Just Posted RECORD Results!
Uh, we would have, uh, one of the fellows in the office has about 10 million shares, and I have for Berkshire’s account about 123 million. So we got about 133 million shares—one of them bought, and then you, as a result, bought some additional. One of the…
How Should Business Schools Prepare Students for Startups? – Jeff Bussgang and Michael Seibel
Hey, this is Craig Cannon, and you’re listening to Y Combinator’s podcast. Today’s episode is a conversation about business schools and startups with Jeff Busgang, a lecturer at HBS and GP at Flybridge Capital Partners. Jeff called in to talk with YC CEO …
Warren Buffett's BIG Warning for Investors (2021)
I would like to, uh, just go over two items that I would like particularly new entrants to the stock market to, uh, ponder just a bit before they try and do 30 or 40 trades a day, uh, in order to profit from what looks like a very, uh, easy game. So, uh, …