yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limit of (1-cos(x))/x as x approaches 0 | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

What we want to do in this video is figure out what the limit as ( x ) approaches ( z ) of ( \frac{1 - \cos(x)}{x} ) is equal to. We're going to assume we know one thing ahead of time: we're going to assume we know that the limit as ( x ) approaches ( 0 ) of ( \frac{\sin(x)}{x} ) is equal to ( 1 ). I'm not going to reprove this in this video, but we have a whole other video dedicated to proving this famous limit, and we do it using the squeeze or the sandwich theorem.

So let's see if we can work this out. The first thing we're going to do is algebraically manipulate this expression a little bit. What I'm going to do is I'm going to multiply both the numerator and the denominator by ( 1 + \cos(x) ). So, times the denominator, I have to do the same thing, ( 1 + \cos(x) ). I'm not changing the value of the expression; this is just multiplying it by one.

But what does that do for us? Well, I can rewrite the whole thing as the limit as ( x ) approaches zero of ( (1 - \cos(x))(1 + \cos(x)) ). Well, that is just going to be, let me do this in another color, that is going to be ( 1^2 - \cos^2(x) ), which is just ( \sin^2(x) ) by the difference of squares.

In the denominator, I am going to have ( x(1 + \cos(x)) ). Now, what is ( 1 - \cos^2(x) )? Well, this comes straight out of the Pythagorean identity; this is the same thing as ( \sin^2(x) ). So I can rewrite all of this as being equal to the limit as ( x ) approaches zero.

And let me rewrite this as, instead of ( \sin^2(x) ), that's the same thing as ( \sin(x) \cdot \sin(x) ). Let me write it that way: ( \sin(x) \cdot \sin(x) ). So I'll take the first ( \sin(x) ) and put it over this ( x ), so ( \frac{\sin(x)}{x} ) times the second ( \sin(x) ), let's say this one over ( 1 + \cos(x) ).

So ( \frac{\sin(x)}{1 + \cos(x)} ). All I've done is leverage a trigonometric identity and done a little bit of algebraic manipulation. Well, here the limit of the product of these two expressions is going to be the same thing as the product of the limits, so I can rewrite this as being equal to the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} ) times the limit as ( x ) approaches zero of ( \frac{\sin(x)}{1 + \cos(x)} ).

Now, we said going into this video that we're going to assume that we know what this is. We prove it in other videos. What is the limit as ( x ) approaches zero of ( \frac{\sin(x)}{x} )? Well, that is equal to ( 1 ). So this whole limit is just going to be dependent on whatever this is equal to.

Well, this is pretty straightforward. Here, as ( x ) approaches zero, the numerator is approaching zero, ( \sin(0) ) is ( 0 ), and the denominator is approaching ( 1 + \cos(0) ), which is ( 2 ). So this is approaching ( \frac{0}{2} ) or just ( 0 ).

So that's approaching ( 0 ). ( 1 \cdot 0 ), well this is just going to be equal to ( 0 ), and we're done.

Using that fact and a little bit of trig identities and a little bit of algebraic manipulation, we were able to show that our original limit, the limit as ( x ) approaches ( 0 ) of ( \frac{1 - \cos(x)}{x} ) is equal to ( z ). I encourage you to graph it; you will see that that makes sense from a graphical point of view as well.

More Articles

View All
i HATCHED The 1st Titanic Autumn Teddy Bear In the WORLD! (Pet Sim 99 Anniversary Update)
This is the story of how I got the very first Titanic Autumn teddy bear in the entire world. Oh my God, it’s growing! I can’t believe it! I actually did it! Oh my God, but what if I told you I wasn’t stopping there? You see, this video, we set out to not …
Reframing Black History and Culture | Podcast | Overheard at National Geographic
[Music] I’m Deborah Adam Simmons, executive editor for history and culture at National Geographic. You’re listening to In Conversation, a special episode exploring black history and culture. [Music] Hey, Deborah! Welcome to Overheard. Hi, Amy! Thanks! I…
🚨 BREAKING FLAG NEWS: Minnesota Getting a New Flag
Breaking flag news. Breaking flag news! Minnesota is redesigning her flag. The current colors provocatively called, quote, “worst in the union,” by some YouTuber, Minnesota asked for submissions, received thousands, out of which selected six, then thinned…
This Unstoppable Robot Could Save Your Life
This is a robot that can grow to hundreds of times its size, and it can’t be stopped by adhesives or spikes. Although it looks kind of simple and cheap, it has dozens of potential applications, including, one day maybe saving your life. This video is spon…
Warren Buffett, Brian Moynihan Speak at Georgetown
(bell rings) [Announcer] Ladies and gentlemen, please welcome to the stage Lindsay Bruinsma, an MBA candidate at the McDonough School of Business, John J. DeGioia, President of Georgetown University, Brian T. Moynihan, CEO of Bank of America, and Warren …
2015 AP Chemistry free response 4 | Chemistry | Khan Academy
Answer the following questions about the solubility of calcium hydroxide, and they give us the solubility product. Write a balanced chemical equation for the dissolution of solid calcium hydroxide in pure water. So, we’re going to start off with calcium…