yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radioactivity: Expect the unexpected - Steve Weatherall


3m read
·Nov 9, 2024

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

It is only in the last 100 or so years that humankind has understood that the nucleus of the chemical elements is not always fixed. It can change spontaneously from one element to another. The name for this process is radioactivity.

You probably already know something about the nucleus: it's much tinier than the atom, it's made of particles called protons and neutrons, there are electrons orbiting around it. And though the atoms can share or swap electrons when they bond together, the nuclei themselves never change. Right? Well, no. Certain nuclei are not stable in that way. This means they may change suddenly, spontaneously.

The radioactive nucleus flings out a small particle and transforms into another element, just like that. For example, the carbon nucleus can eject a fast-moving electron and turn into a nitrogen nucleus. There are two different particles that can be emitted from radioactive nuclei, but never together. The very fast electron is known as a beta particle.

If you know a little bit about electrons, you may be thinking, "What was the electron doing in the nucleus in the first place?" The answer is there is a neutron in the nucleus spontaneously changed into a proton, which stayed behind, and the electron flew out as a beta particle. This is not what chemistry has taught us to expect. The nucleus is supposed to be stable. Neutrons don't change into protons. Except, sometimes they do!

The other particle it emits spontaneously from an unstable nucleus is alpha. An alpha particle is 8,000 times more massive than beta, and it's a bit slower. Alpha is made from two protons and two neutrons. If we trap all those alpha particles together, we get helium gas. Alpha is a helium nucleus. Like the beta particle, you would not have expected a heavier nucleus to throw out helium.

But again, it happens, and the nucleus becomes a new element. So, is radioactivity useful or just dangerous? Wherever you are sitting, it is quite likely that there is a device nearby which contains a source of alpha particles: a smoke detector. The source is radioactive Americium. You are totally safe from these alpha particles, which cannot travel more than a few centimeters in air.

Beta particles penetrate much farther through materials than alpha can. Radioactive atoms are used in medicine as traces, to show where chemicals travel in the patient. Beta particles are emitted and have enough energy to emerge from the body and be detected.

There is a third type of nuclear radiation: gamma, which is not a particle at all. It is an electromagnetic wave, like microwaves, or light, but it is actually 1,000 times more energetic than visible light. Gamma rays may pass right through your body. Gamma is used to zap the bacteria in fruit to increase its shelf life, or in radiotherapy to kill cancer cells.

Radioactive substances get hot, and this heat can be used to generate power. This heat has been brought to you since space probes, and, in the past, in pacemakers for hearts. The more abruptly nuclear radiation is slowed down, the more damage it does to the atoms it hits. This is called ionization.

Alpha causes the most ionization as it crashes into other atoms and gamma the least. In humans, the most serious effect of radiation is the damage that it can cause to our DNA. Although alpha cannot penetrate your skin, if you inhale or ingest a radioactive nucleus, the health consequences can be severe.

Radioactivity is both useful and deadly, but it is all around us as a background to the natural world.

More Articles

View All
7 Lessons For Creatives From Nikola Tesla
Nikola Tesla was an inventor, electrical engineer, and physicist. He’s seen as one of the greatest engineers and inventors of all time and is best known for his contributions to the modern electricity supply system. Tesla spent a great portion of his life…
The Long Road Home | National Geographic
All committee, Reds, red one. Keep your eyes open, boys. Over, guys. See what I’m saying? Where the hell is everyone? Hold position. Culver, you—I know you’re upset, but we talked about this, right? Look, it’s a little like football. I’m the team captain…
Have We Disproven the Big Bang? | David Kipping
One of the things I wanted to ask you, for example, is that I know there’s— I know this isn’t your area of specialty, but any light you could shed on it would be, uh, um, appreciated. I’ve heard that the new telescopes, which can see farther into space th…
500th Video Winner & Solution
Hey guys, this is Matt Cats 101 and today I’m going to be announcing the winner to our 500th video contest giveaway. So you’ll see right here, I’ll just put up on the screen the list of correct submissions. We got six of them in the course of two days, wh…
Why generational pressure is the key to climate change policy | Dan Esty | Big Think
DANIEL C. ESTY: The key to progress on environment broadly and on climate change in particular is to change values. I think this has to be understood as, in some regards, an ethical issue, a moral issue. And one has to see it as a wrong to contaminate the…
Richard Dawkins: No, Not All Opinions Are Equal—Elitism, Lies, and the Limits of Democracy
[Music] Among the reasons that I heard for people wanting to vote for Brexit were, well, it’s nice to have a change, and well, I preferred the old blue passport to the European purple passport. These are the kinds of reasons people were giving for voting …