yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radioactivity: Expect the unexpected - Steve Weatherall


3m read
·Nov 9, 2024

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

It is only in the last 100 or so years that humankind has understood that the nucleus of the chemical elements is not always fixed. It can change spontaneously from one element to another. The name for this process is radioactivity.

You probably already know something about the nucleus: it's much tinier than the atom, it's made of particles called protons and neutrons, there are electrons orbiting around it. And though the atoms can share or swap electrons when they bond together, the nuclei themselves never change. Right? Well, no. Certain nuclei are not stable in that way. This means they may change suddenly, spontaneously.

The radioactive nucleus flings out a small particle and transforms into another element, just like that. For example, the carbon nucleus can eject a fast-moving electron and turn into a nitrogen nucleus. There are two different particles that can be emitted from radioactive nuclei, but never together. The very fast electron is known as a beta particle.

If you know a little bit about electrons, you may be thinking, "What was the electron doing in the nucleus in the first place?" The answer is there is a neutron in the nucleus spontaneously changed into a proton, which stayed behind, and the electron flew out as a beta particle. This is not what chemistry has taught us to expect. The nucleus is supposed to be stable. Neutrons don't change into protons. Except, sometimes they do!

The other particle it emits spontaneously from an unstable nucleus is alpha. An alpha particle is 8,000 times more massive than beta, and it's a bit slower. Alpha is made from two protons and two neutrons. If we trap all those alpha particles together, we get helium gas. Alpha is a helium nucleus. Like the beta particle, you would not have expected a heavier nucleus to throw out helium.

But again, it happens, and the nucleus becomes a new element. So, is radioactivity useful or just dangerous? Wherever you are sitting, it is quite likely that there is a device nearby which contains a source of alpha particles: a smoke detector. The source is radioactive Americium. You are totally safe from these alpha particles, which cannot travel more than a few centimeters in air.

Beta particles penetrate much farther through materials than alpha can. Radioactive atoms are used in medicine as traces, to show where chemicals travel in the patient. Beta particles are emitted and have enough energy to emerge from the body and be detected.

There is a third type of nuclear radiation: gamma, which is not a particle at all. It is an electromagnetic wave, like microwaves, or light, but it is actually 1,000 times more energetic than visible light. Gamma rays may pass right through your body. Gamma is used to zap the bacteria in fruit to increase its shelf life, or in radiotherapy to kill cancer cells.

Radioactive substances get hot, and this heat can be used to generate power. This heat has been brought to you since space probes, and, in the past, in pacemakers for hearts. The more abruptly nuclear radiation is slowed down, the more damage it does to the atoms it hits. This is called ionization.

Alpha causes the most ionization as it crashes into other atoms and gamma the least. In humans, the most serious effect of radiation is the damage that it can cause to our DNA. Although alpha cannot penetrate your skin, if you inhale or ingest a radioactive nucleus, the health consequences can be severe.

Radioactivity is both useful and deadly, but it is all around us as a background to the natural world.

More Articles

View All
Starting a Startup After Business School - Reham Fagiri and Kalam Dennis of AptDeco
Alright guys, well thanks for inviting me to your amazing office. Thank you, so what do you guys make? So we are App Deco. App Deco is a marketplace for buying and selling furniture based here in New York City. We take care of essentially like the whole …
Passing atmospheric levels of cool 🧑‍🚀🌏 #womeninstem #space
This is how many tampons Sally Ride was offered on her first space mission, which lasted about six days. Like a lot of STEM fields, NASA was male-dominated, and Sally Ride was their first female astronaut. After her death, we learned something very privat…
What It Takes to Keep America Beautiful | Podcast | Overheard at National Geographic
When we got in and we were on the beach, the first thing you notice is the dramatic, you know, uh, sea stacks that from a distance just, you know, they look like mountain ranges almost. But they’re so close. In May 2022, National Geographic photographer S…
Transforming nonlinear data | More on regression | AP Statistics | Khan Academy
So we have some data here that we can plot on a scatter plot that looks something like that. And so the next question, given that we’ve been talking a lot about lines of regression or regression lines, is can we fit a regression line to this? Well, if w…
Income elasticity of demand | APⓇ Microeconomics | Khan Academy
In previous videos, we have talked about the idea of price elasticity. It might have been price elasticity of demand or price elasticity of supply, but in both situations, we were talking about our percent change in quantity over our percent change in pri…
Fracking explained: opportunity or danger
What is hydraulic fracturing – or fracking? Since the industrial revolution, our energy consumption has risen unceasingly. The majority of this energy consumption is supplied by fossil fuels like coal or natural gas. Recently, there has been a lot of talk…