yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing a shifted and stretched absolute value function


3m read
·Nov 11, 2024

So we're asked to graph ( f(x) = 2 \times |x + 3| + 2 ).

And what they've already graphed for us, this right over here, is the graph of ( y = |x| ).

Let's do this through a series of transformations. So the next thing I want to graph, let's see if we can graph ( y = |x + 3| ). Now, in previous videos, we have talked about it: if you replace your ( x ) with ( x + 3 ), this is going to shift your graph to the left by 3. You could view this as the same thing as ( y = |x - (-3)| ). Whatever you are subtracting from this ( x ), that is how much you are shifting it.

So you're going to shift it three to the left, and we're gonna do that right now. Then we're just gonna confirm that it matches up, that it makes sense.

So let's first graph that and get my ruler tool here. If we shift 3 to the left, it's going to look something like this.

On that, whenever we have inside the absolute value sign is positive, we're going to get essentially this slope of 1. Whenever we have inside the absolute value sign is negative, we're going to have a slope of essentially negative 1. So it's going to look like that.

Let's confirm whether this actually makes sense below ( x = -3 ). For ( x ) values less than -3, what we're going to have here is this inside of the absolute value sign is going to be negative, and so then we're going to take its opposite value. So that makes sense; that's why you have this downward line right over here.

Now, for ( x ) greater than -3, when you add 3 to it, you're going to get a positive value, and so that's why you have this upward sloping line right over here. At ( x = -3 ), you have zero inside the absolute value sign, just as if you didn't shift it. You would have had zero inside the absolute value sign at ( x = 0 ).

So hopefully that makes a little bit more intuitive sense of why if you replace ( x ) with ( x + 3 )—and this isn't just true of absolute value functions; this is true of any function—if you replace ( x ) with ( x + 3 ), you're going to shift 3 to the left.

Alright, now let's keep building. Now, let's see if we can graph ( y = 2 \times |x + 3| ). So what this is essentially going to do is multiply the slopes by a factor of 2. It's going to stretch it vertically by a factor of 2.

So for ( x ) values greater than -3, instead of having a slope of 1, you're gonna have a slope of 2. Let me get my ruler out again and see if I can draw that.

Let me put that there, and then—so, here, instead of a slope of 1, I'm going to have a slope of 2. Let me draw that; it's going to look like that right over there.

Then, instead of having a slope of negative 1 for values less than ( x = -3 ), I'm going to have a slope of negative 2. Let me draw that right over there.

So that is the graph of ( y = 2 \times |x + 3| ).

And now, to get to the ( f(x) ) that we care about, we now need to add this 2. So now I want to graph ( y = 2 \times |x + 3| + 2 ). Well, whatever ( y ) value I was getting for this orange function, I now want to add 2 to it; this is just going to shift it up vertically by 2.

So instead of—this is going to be shifted up by 2. This is going to be shifted; every point is going to be shifted up by 2. Or you can think about shifting up the entire graph by 2. Here in the orange function, whatever ( y ) value I got for the black function, I'm going to have to get 2 more than that.

And so it's going to look like this. Let me see; I'm shifting it up by 2. So for ( x ) less than -3, it'll look like that, and for ( x ) greater than -3, it is going to look like that.

And there you have it! This is the graph of ( y ) or ( f(x) = 2 \times |x + 3| + 2 ).

You could have done it in different ways. You could have shifted up 2 first, then you could have multiplied by a factor of 2, and then you could have shifted. So you could have moved up two first, then you could have multiplied by a factor of 2, then you could have shifted left by 3.

Or you could have multiplied by a factor of 2 first, shifted up 2, and then shifted over. So there are multiple—there are three transformations going up here.

This is a—let me color them all.

So this right over here tells me: shift left by 3. This tells us: stretch vertically by 2, or essentially multiply the slope by 2; stretch vertical by 2.

And then that last piece says: shift up by 2. Shift up by 2, which gives us our final result for ( f(x) ).

More Articles

View All
Changes in labor supply | Microeconomics | Khan Academy
In a previous video, we took a look at the labor markets, and we thought about it in the context of the entire market and how it might impact a firm. So let’s say that all of a sudden, the nation’s immigration policy changes where they’re willing to bring…
Minimum efficient scale and market concentration | APⓇ Microeconomics | Khan Academy
In this video, we’re going to think about the concept of minimum efficient scale and then how that impacts market concentration. We’re going to make sure we understand what both of these ideas are. So first of all, minimum efficient scale, you can view i…
Why We’re Going Back to the Moon
That’s one small step for man, one diabetes. On July 16, 1969, Apollo 11 blasted off into space carrying three astronauts bound for the Moon. Four days later, Neil Armstrong became the first man to ever set foot on our celestial neighbor, marking a new e…
Bullet vs Prince Rupert's Drop at 150,000 fps - Smarter Every Day 165
All right, Keith. Prince Rupert’s drop. Prince Rupert’s drop, right? Paper submitted from 1660 to the Royal Society. So this is a very early stuff. Hey, it’s me, D. Welcome back to Smarter Every Day. I am in the basement of the Royal Society in London, En…
Mohnish Pabrai: Buy Stocks Now? Or Wait?
Well, as you guys know, one of the investors I follow very closely is Monish Pabrai. About a week ago now, he put out a new Q&A video on his channel with the Kolkata Value Hunters Club. So, I watched the whole thing, and I’ve pulled out some very inte…
Safari Live - Day 190 | National Geographic
You you you you you you you you you you you you this program features live coverage of an African safari and may include animal kills and caucuses. Viewer discretion is advised. A very very good afternoon to you all and welcome to the beginning of our sho…