yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
Water Technology in Architecture | National Geographic
[Music] Here on the snowy slopes of Mount Hood, Oregon, it seems impossible that the U.S. could ever run low on water. But government-backed research says we could in little more than 50 years. [Music] Oregon relies heavily on snowmelt for its fresh water…
Summer of Grey: Parts 1 & 3
Well, that doesn’t look good. 🎵 Intro music 🎵 Hello, Lucy Liu. I am in North Carolina. It is the start of what is going to be five long weeks of business travel and business meetings. I’m trying to get better at business meetings. Also, while I’m here, I…
What Happens If We Bring the Sun to Earth?
What would happen if you were to bring a tiny piece of the Sun to Earth? Short answer: you die. Long answer: it depends which piece of the Sun. Like most of the matter in the universe, our Sun is neither solid, liquid or gas, but plasma. Plasma is when s…
Meru: Risk and Responsibility in Climbing | Nat Geo Live
Jimmy: The thing about this film is that the intention behind it was to show a side of climbing that I didn’t think that mainstream audience really got. We embarked in 2008 on this climb and started shooting together, but one of the themes that we talk ab…
Non-inverting op-amp circuit
Okay, now we’re going to work on our first op-amp circuit. Here’s what the circuit’s going to look like. Watch where it puts the plus sign; it is on the top on this one. We’re going to have a voltage source over here; this will be plus or minus Vn. That’s…
A Traveling Circus and its Great Escape | Podcast | Overheard at National Geographic
So, as I was driving around, I just noticed the big red and yellow big top in the distance, in the middle of essentially a paralyzed, frozen entire city. When I saw it, I thought to myself, “Well, I wonder what they’re doing?” That’s photographer Tomas S…