yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
Affordable Watches For Your Collection | Reacting To Underappreciated Watches FT. Teddy Baldassarre
This is the gateway drug. It is, I mean, this is it, so be careful. What if I told you this watch is around 300 bucks? Can’t be! You know, you instead of going out for dinner, buy a watch. Okay, Mr. Wonderful here, you know I’m doing a very special editio…
15 Skills You Need to Thrive in The Next 15 Years
You know what? It’s the rule breakers who’ll be the most successful in the future workforce. Those who stick to the guidelines are going to struggle; machines can do that. If you want to be competitive in the workforce, well then, you need to add value be…
How Politicians Keep Getting So Rich
This is Representative Alan Lowenthal, a Democrat in California. He sits on the House Committee on Transportation and Infrastructure, which on the 6th of March 2020 released this report detailing the preliminary findings from an investigation into the Boe…
TIL: Choosing a Mars Landing Spot is Harder Than You Think | Today I Learned
If you have an entire planet to explore, where do you go? Mars is a place where we can get rovers on the ground, but what is the one site that will tell us the most about Mars? So first, can we land there? Is it safe? Second, do we want to land there, an…
Growing Up in the African Wild : Beyond ‘Savage Kingdom’ (Part 1) | Nat Geo Live
(Dramatic orchestral music) - Imagine you’re out in Africa. It’s night-time, you’re sleeping in the back of an open vehicle, and it’s so hot that you have no clothes on and you’re still sweating. All you can hear is the distant call of a hyena and an impa…
Warren Buffett is BUYING! Pharmaceuticals in, banks out? (Berkshire Q3 13F)
So last quarter, Warren Buffett certainly, uh, shocked a lot of us with the sheer amount of selling that he did from his portfolio. I remember he sold out of seven positions entirely, which is very unlike Warren Buffett. Four of those positions were the b…