yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
My Worst Financial Mistake (The #1 Wealth Killer)
Hey guys! So about a month ago, I took a break from the normal content to post a more personal video that wasn’t scripted, and I just spoke from the heart for over 30 minutes. To my surprise, it seems like a lot of you preferred that style of video, so I’…
Photosynthesis in organisms | Matter and energy in organisms | Middle school biology | Khan Academy
Hey, I’m going to let you in on a little secret of mine. I love gardening! In fact, I have a huge garden with apples, blueberries, pumpkins, and tomatoes. I give my plants micronutrients and maybe some fertilizer, but I don’t give them food in the same wa…
How Many Moons Could Earth Handle? #kurzgesagt #shorts
How many moons could Earth handle? The main factor is space. Any moon needs a clean orbit and we have to take two things into account. One, it can’t be too far; otherwise, it won’t follow a stable orbit around us. Two, it can’t be too close either, or the…
Fundraising Panel at Female Founders Conference 2015
Wow, this is awesome! There are so many women in the audience, and I am so happy to be here with you. So, um, I’m Danielle, as Cat introduced, and I want to talk to you a little bit about fundraising. We’re going to have a panel in just a minute and have …
Could Sea Breezes Increase Shark Attacks? | When Sharks Attack
The breeze, it seems like an innocuous detail, but according to meteorologist Joe Merchant, it’s a vital piece of evidence when analyzing shark attacks. “I’ve been a meteorologist for eight years for the National Weather Service, and I recently started s…
Income elasticity of demand | APⓇ Microeconomics | Khan Academy
In previous videos, we have talked about the idea of price elasticity. It might have been price elasticity of demand or price elasticity of supply, but in both situations, we were talking about our percent change in quantity over our percent change in pri…