yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
WHAT IS THIS LINE? (on my Super Blue Blood Moon Photo) - Smarter Every Day 188
Hey, it’s me Destin. Welcome back to Smarter Every Day. Super. Blue. Blood. Moon. I heard those words and I was like, “Mmhmm, that’s my life now.” So, here’s the deal. “Supermoon” refers to the fact that the Moon goes around the Earth in an ellipse. When …
See How NASA Helped An Artist Create Stunning Drawings of Glaciers | Short Film Showcase
[Music] I wear any brand. I wear glasses like wear nostril filters or not breathing. I mean, not when there’s a camera on me. [Music] I’m an artist. I draw large-scale landscape drawings that document Earth’s changing climate. I’m so moved personally by t…
Inside the Epic World of Bertie Gregory | Podcast | Overheard at National Geographic
We’ve got something new this week! Our colleague and National Geographic Channel’s executive producer, Drew Jones, is going to take us behind the scenes of Epic Adventures with Bertie Gregory. I’ll let him and Bertie take it from here. You ready? I’m Bets…
The mindset that is slowly destroying your life
[Music] Ah, what a lovely weekend in the neighborhood. Susan is out walking the dog. Frank is hard at work writing his new book, and Billy is, ah yes, a classic Billy Saturday—waking up late, his mind filled with dread. There are so many things he could d…
PURPOSE of WEALTH (Pt3): COMFORT
Hello Alers, and welcome back as we continue our purpose of wealth series. If you haven’t watched the first two parts covering freedom and security, we recommend you start there, as this is the first one to touch on the positive material benefits brought …
How to Talk to Aliens
[Michael] Where is everyone? We have been listening for messages from outer space for more than half a century, and so far… silence. Why? Are we truly alone in the universe? Or is everyone else acting like us and just doing a lot of listening? Maybe we ne…