yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
8 Most Important Lessons from the 2022 Berkshire Hathaway Annual Meeting
Every year, 40,000 people travel to Omaha, Nebraska to listen to investing legends Warren Buffett and Charlie Munger speak. They share their thoughts on practically everything, from what they see going on in the stock market and in the economy, all the wa…
Judicial activism and judicial restraint | US government and civics | Khan Academy
What we’re going to do in this video is talk about the terms judicial activism and judicial restraint. In many videos, we have talked about how the judicial branch, one of its main powers, is to be a check on the executive and legislative branch; that it …
How Stoicism Became The World's Greatest Scam
Stoicism is changing. You know, I’ve been reading Marcus Aurelius’s “Meditations.” Wow! I listened to it in the sauna; it’s really intense because you’re thinking these are the writings—the direct writings—that we have from a guy who lived 2,000 years ago…
The Truth Behind Branson and Bezos Going to Space... (Virgin Galactic and Blue Origin Launches)
So, over the past month, billionaires Jeff Bezos and Sir Richard Branson both independently announced that they themselves would be suiting up, hopping in their respective companies’ rockets and launching into space. Jeff Bezos would take to the skies in …
How to STOP Wasting Your Life
You won’t walk around all day knowing that you could, but you didn’t. Have you ever felt like your life is out of control? Almost as if it’s slipping away from your grasp, and you can’t do anything about it? Do you feel stuck, hopeless, tired, and unmotiv…
How to Solve Money Disputes Like a Multi-Millionaire | Shark Tank's Kevin O'Leary
Hi there, Mr. Wonderful here. There’s nothing more stressful than a money dispute, whether it’s with a business partner or a family member, and in these extraordinary times, the stakes are higher than ever. But you know what? You don’t need that stress. Y…