yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
You Are Two
Your brain is two brains. Two hemispheres, each doing half the work of being you. Half your vision goes to each, and half your movement directed by each. Right controls left, and left controls right. Your two brains coordinate through a wire of nerves, bu…
AP Physics 1 review of Centripetal Forces | Physics | Khan Academy
What does period and frequency mean? The period is the number of seconds it takes for a process to complete an entire cycle, circle, or revolution. So, if there’s some repeating process, the time it takes that process to reset is the period, and it’s mea…
How I Made My First Million Dollars Part 2 | Ask Mr. Wonderful Shark Tank's Kevin O'Leary
Hey, Mr. Wonderful here, and welcome to another episode of Ask Mr. Wonderful. Now, this week, as always, has been brought to you by questions from the audience, which I think is the best way to do this. There are two that I found absolutely fascinating, k…
How to Help Small Businesses During COVID-19 | Ask Mr. Wonderful #22 Kevin O'Leary & Maria Sharapova
I Mr. Wonderful here, and welcome to another episode of Ask Mr. Wonderful. Now, you know what I love to do time to time is to invite a guest onto the show to help me answer all of your questions. I’m always amazed by how many questions we get and where we…
Kenya’s Wildlife Warriors | Podcast | Overheard at National Geographic
I just spent the morning driving in a 4x4 through rolling grass savannas in Kenya’s world famous Masai Mara. Already we’ve seen a group of cheetahs napping under a large acacia tree and a pair of young male lions lolling in the grass. Eyeing a group of ze…
Identifying value in digits
So I’m going to write down a number, and I’m going to think about how much do each of these digits of the number—what value do they represent? And actually, let me pick on this 2 here. What does that 2 represent? Does it just represent two, or does it rep…