yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing functions for discontinuities (continuous example) | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we have ( g(x) ) being defined as the log of ( 3x ) when ( 0 < x < 3 ) and ( 4 - x ) times the log of ( 9 ) when ( x \geq 3 ).

So based on this definition of ( g(x) ), we want to find the limit of ( g(x) ) as ( x ) approaches ( 3 ). Once again, this ( 3 ) is right at the interface between these two clauses or these two cases.

We go to this first case when ( x ) is between ( 0 ) and ( 3 ), when it's greater than ( 0 ) and less than ( 3 ), and then at ( 3 ) we hit this case. In order to find the limit, we want to find the limit from the left-hand side, which will have us dealing with this situation. Because if we're less than ( 3 ), we're in this clause, and we also want to find the limit from the right-hand side, which would put us in this clause right over here.

Then, if both of those limits exist and if they are the same, then that is going to be the limit of this. So let's do that.

Let me first go from the left-hand side, so the limit as ( x ) approaches ( 3 ) from values less than ( 3 ). So we're going to approach from the left of ( g(x) ). Well, this is equivalent to saying this is the limit as ( x ) approaches ( 3 ) from the negative side when ( x ) is less than ( 3 ).

Which is what's happening here; we’re approaching ( 3 ) from the left. We're in this clause right over here, so we're going to be operating right over there. That is what ( g(x) ) is when we are less than ( 3 ), so we have ( \log(3x) ).

Since this function right over here is defined and continuous over the interval we care about, it's defined and continuous for all ( x > 0 ). Well, we can just substitute ( 3 ) in here to see what it would be approaching. So this would be equal to ( \log(3 \times 3) ) or ( \log(9) ).

And once again, when people just write ( \log ) here without writing the base, it's implied that we're dealing that it is ( 10 ) right over here. So this is ( \log_{10} ). That's just a good thing to know that sometimes gets missed a little bit.

All right, now let's think about the other case. Let's think about the situation where we are approaching ( 3 ) from the right-hand side, from values greater than ( 3 ). Well, we are now going to be in this scenario right over there.

So this is going to be equal to the limit as ( x ) approaches ( 3 ) from the positive direction, from the right-hand side of ( g(x) ) in this clause when we are greater than ( 3 ), so ( 4 - x ) times ( \log(9) ).

And this looks like some type of a logarithm expression at first until you realize that ( \log(9) ) is just a constant. ( \log_{10}(9) ) is going to be some number close to ( 1 ). This expression would actually define a line for ( x \geq 3 ).

( g(x) ) is just a line, even though it looks a little bit complicated, and so this is actually defined for all real numbers. It's continuous for any ( x ) that you put into it, so to find this limit, we think about what this expression is approaching as we approach ( 3 ) from the positive direction. Well, we can just evaluate it at ( 3 ).

So it's going to be ( 4 - 3 ) times ( \log(9) ), well that's just ( 1 ), so that's equal to ( \log_{10}(9) ).

So the limit from the left equals the limit from the right; they're both ( \log(9) ). So the answer here is ( \log(9) ), and we are done.

More Articles

View All
Why Do Sand Tiger Sharks Form Gangs? | Shark Gangs
Off the coast of North Carolina lies a treacherous stretch of water with strong currents and shifting sands, with the remains of up to 5,000 ships. It’s known as the graveyard of the Atlantic. Hidden within this eerie resting place for lost souls are gang…
The Making of Jane - Trailer | National Geographic
JANE GOODALL: My mission was to get close to the chimpanzees and live among them, to be accepted. When I was 10 and I said, “I’m going to grow up, go to Africa, and live with wild animals and write books about them,” everybody laughed. I wanted to do thin…
Warren Buffett: Should You Wait for a Market Crash Before Buying Stocks?
It seems like nearly every video on YouTube is warning investors that stock prices are too high and that they should be worrying about an upcoming stock market crash. With the stock market hitting all-time highs, I need to better understand how I should b…
Elizabeth Iorns on Biotech Companies in YC
So welcome to the podcast! How about we just start with your just quick background? Sure! So I’m Elizabeth Lyons. I’m the founder and CEO of Science Exchange, and I’m a cancer biologist by training. I did my PhD at the Institute of Cancer Research in Lon…
Equilibrium price and quantity from changes in both supply and demand
[Instructor] Now in these bottom four, let’s think about the situation where both of the curves might move. So let’s first imagine a scenario where supply goes up and demand goes down. So once again, maybe a major producer is entering into the market. Sup…
Units of the rate constant | Kinetics | AP Chemistry | Khan Academy
[Voiceover] In this video, we’re going to be talking about how you can find the units for your rate constant k. So the two things you should know before we get started are that, one, rate constant k has units. So this isn’t always true of constants in c…