yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

3 questions to ask yourself before you believe something - Siska De Baerdemaeker


4m read
·Nov 8, 2024

In the late 1700s, a German doctor named Samuel Hahnemann began publishing articles about a new treatment approach he called homeopathy. Hahnemann’s theory had two central hypotheses. First, the treatment for an ailment should be a dose of something that might cause that ailment. And second, diluted medicines are more powerful than concentrated ones. So, a homeopathic remedy for insomnia might include an extremely diluted solution of caffeine.

Over the following 300 years, numerous physicians and patients turned to homeopathy, and entire hospitals were built to focus on homeopathic treatments. But despite all this, many studies have shown that homeopathy has no therapeutic effect, and homeopathic treatments often perform no better than placebos. So why do so many practitioners and institutions still support this practice? The answer is that homeopathy is a pseudoscience—a collection of theories, methods, and assumptions that appear scientific, but aren’t. In the worst cases, pseudoscience practitioners encourage this confusion to exploit people. But even when they’re well-intentioned, pseudoscience still prevents people from getting the help they need.

So how are you supposed to tell what’s science and what’s pseudoscience? This question is known as the demarcation problem, and there's no easy answer. Part of the issue is that defining science is surprisingly tricky. There's a common idea that all science should, in some form or another, be related to testing against empirical evidence. But some scientific activities are primarily theoretical, and different disciplines approach empiricism with varying goals, methodologies, and standards.

20th century philosopher Karl Popper tried to solve the demarcation problem with a simple rule. He argued that in order for a theory to be scientific it must be falsifiable, or able to be proven wrong. This requires a theory to make specific predictions—for example, if you’re theorizing that the Earth revolves around the Sun, you should be able to predict the path of other celestial bodies in the night sky. This could then be disproven based on whether or not your prediction corresponds to your observations.

Popper’s falsification criterion is a great way to identify pseudoscientific fields like astrology, which makes overly broad predictions that adapt to any observation. However, falsification alone doesn't completely solve the demarcation issue. Many things we now consider science were once untestable due to a lack of knowledge or technology. Fortunately, there are other factors we can use to identify pseudoscience, including how a field responds to criticism.

Scientists should always be open to the possibility that new observations could change what they previously thought, and thoroughly disproven theories should be rejected in favor of new explanations. Conversely, pseudoscientific theories are often continually modified to explain away any contradictory results. This kind of behavior shows a resistance to what philosopher Helen Longino calls transformative criticism. Pseudoscientific fields don't seek to address their internal biases or meaningfully engage in transparent peer review.

Another key marker of science is overall consistency. Science relies on a network of shared information that ongoing research develops across disciplines. But pseudoscience often ignores or denies this shared pool of data. For example, creationists claim that animals didn’t evolve from a common ancestor, and that Earth is less than 20,000 years old. But these claims contradict huge amounts of evidence across multiple scientific disciplines, including geology, paleontology, and biology.

While the scientific method is our most reliable tool to analyze empirical evidence from the world around us, it certainly doesn't reveal everything about the human condition. Faith-based beliefs can play an important role in our lives and cultural traditions. But the reason it’s so important to draw a line is that people often dress up belief systems as science in efforts to manipulate others or undermine legitimate scientific discoveries. And even in cases where this might seem harmless, legitimizing pseudoscience can impede genuine scientific progress.

In a world where it's increasingly difficult to tell fact from fiction, it's essential to keep your critical thinking skills sharp. So the next time you hear an amazing new claim, ask yourself: could we test this? Are the individuals behind this theory updating their claims with new findings? Is this consistent with our broader scientific understanding of the world? Because looking scientific and actually being scientific are two very different things.

More Articles

View All
Will COVID-19 Kill the Music Industry? | Ask Mr. Wonderful #25 Kevin O'Leary ft CEO of Rolling Stone
Hello everybody, and welcome to another episode of Ask Mr. Wonderful. Who’s my guest? This is fantastic! It’s Gus Winner, son of Young Winner, founder of Rolling Stone magazine, cultural icon, rock and roll music, fashion, politics— you name it! So much t…
Make Plasma With Grapes In The Microwave!
So today I’m at the University of Sydney with Steve Boie, and we are exploring everyone’s favorite state of matter: a plasma. Well, actually, my favorite state of matter is the Bose-Einstein condensate, but that’s just me—that’s for another episode. So f…
The Man Who Hated The World (Animated Short Story)
The mind is its own place, and in itself can make a Heaven of Hell, a Hell of Heaven. John Milton. In a dirty prison cell, there lived a man who dedicated his whole life to isolating himself from the world. As opposed to most prisoners, he wasn’t put the…
Probability for a geometric random variable | Random variables | AP Statistics | Khan Academy
Jeremiah makes 25% of the three-point shots he attempts, far better than my percentage for warmup. Jeremiah likes to shoot three-point shots until he successfully makes one. All right, this is a telltale sign of geometric random variables. How many trial…
How Scotland Joined Great Britain
Back in the 1690s, there were only two countries on the island of Great Britain: The Kingdom of Scotland and the Kingdom of England. England and the other great European powers were doing rather well for themselves by expanding their empires through the c…
Introduction to dividing by 2 digits
What we’re going to do in this video is start trying to divide by two-digit numbers. As we’ll see, this is a super important skill that a lot of the rest of mathematics will build off of. But it’s also interesting because it’s a bit of an art. So let’s ju…