yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Transformations, part 3 | Multivariable calculus | Khan Academy


3m read
·Nov 11, 2024

So I want to give you guys just one more example of a transformation before we move on to the actual calculus of multivariable calculus. In the video on parametric surfaces, I gave you guys this function here. It's a very complicated looking function; it's got a two-dimensional input and a three-dimensional output. I talked about how you can think about it as drawing a surface in three-dimensional space, and that one came out to be the surface of a donut, which we also call a Taurus.

So what I want to do here is talk about how you might think of this as a transformation. And first, let me just get straight what the input space here is. So the input space, you could think about it as the entire TS plane, right? We might draw this as the entire T-axis and the S-axis, and just everything here, and see where it maps. But you can actually go to just a small subset of that. So if you limit yourself to T going between zero and, let's say, 2 pi, and then similarly with S going from zero up to 2 pi, and you imagine what, you know, that would be sort of a square region, just limiting yourself to that, you're actually going to get all of the points that you need to draw the Taurus.

And the basic reason for that is that as T ranges from 0 to 2 pi, cosine of T goes over its full range before it starts becoming periodic. Um, S of T does the same, and same deal with S. If you let S range from 0 to 2 pi, that covers a full period of cosine, a full period of S, so you'll get no new information by going elsewhere.

So what we can do is think about this portion of the TS plane kind of as living inside three-dimensional space. This is sort of cheating, but it's a little bit easier to do this than to imagine, you know, moving from some separate area into the space. At the very least, for the animation efforts, it's easier to just start it off in 3D. Um, so what I'm thinking about here, this square is representing that TS plane, and for this function, which is taking all of the points in this square as its input and outputs a point in three-dimensional space, you can think about how those points move to their corresponding output points.

Okay, so I'll show that again. We start off with our TS plane here, and then whatever your input point is, if you were to follow it, and you were to follow it through this whole transformation, the place where it lands would be the corresponding output of this function. And one thing I should mention is all of the interpolating values, as you—in between these—don't really matter. A function is really a very static thing; there's just an input and there's an output.

And if I'm thinking in terms of a transformation, actually moving it, there's a little bit of, uh, a little bit of magic sauce that has to go into making an animation do this. And in this case, I kind of put it into two different phases to sort of roll up one side and roll up the other. It doesn't really matter, but the general idea of starting with a square and somehow warping that—however you do choose to warp it—is actually a pretty powerful thought.

And as we get into multivariable calculus and you start thinking a little bit more deeply about surfaces, I think it really helps if you, you know, you think about what a slight little movement over here on your input space would look like. What happens to that tiny little movement or that tiny little traversal? What it looks like if you did that same movement somewhere on the output space? Um, and you'll get lots of chances to wrap your mind about this and engage with the idea. But here, I just want to get your minds churning on this pretty neat way of viewing what functions are doing.

More Articles

View All
The Making of Jane - Trailer | National Geographic
JANE GOODALL: My mission was to get close to the chimpanzees and live among them, to be accepted. When I was 10 and I said, “I’m going to grow up, go to Africa, and live with wild animals and write books about them,” everybody laughed. I wanted to do thin…
Why were the Mongols so effective? | World History | Khan Academy
The question before us today is why were the Mongols so effective? How do they manage to take an area starting around here and over the course of 20 years, during the reign of Genghis Khan, from about 1206 to 1227, expand from this little part of Siberia,…
Geoff Ralston: The Story of Your Startup
Yeah, I just wanted to spend a couple of minutes talking about something that I think is absolutely vital to startup success. But although it’s fundamental, it is often somewhat overlooked, and that is really the invention, the creation of the story of yo…
The Surest Way out of Misery | Arthur Schopenhauer
Arthur Schopenhauer is infamous for his pessimistic outlook on life. He saw life on Earth as a cosmic disaster and felt that the universe would have been a better place without it. Human existence, as a whole, he compared to a prison sentence. And he also…
Living Off the Land in Hawaii | Explorer
People in developed countries often take it for granted that they can eat whatever delicacy they want from anywhere in the world. But there are some who fear that this globalization of food is putting all of us at risk, and they are now going back to livi…
10 Things I Wish I Knew Before Investing
Hey guys, welcome back to the channel. In this video, I’m going to be going through 10 things I wish I knew before I started investing, so hopefully we can get through these 10 in around about 10 minutes. So, time is on, let’s get stuck into it. The firs…