yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Transformations, part 3 | Multivariable calculus | Khan Academy


3m read
·Nov 11, 2024

So I want to give you guys just one more example of a transformation before we move on to the actual calculus of multivariable calculus. In the video on parametric surfaces, I gave you guys this function here. It's a very complicated looking function; it's got a two-dimensional input and a three-dimensional output. I talked about how you can think about it as drawing a surface in three-dimensional space, and that one came out to be the surface of a donut, which we also call a Taurus.

So what I want to do here is talk about how you might think of this as a transformation. And first, let me just get straight what the input space here is. So the input space, you could think about it as the entire TS plane, right? We might draw this as the entire T-axis and the S-axis, and just everything here, and see where it maps. But you can actually go to just a small subset of that. So if you limit yourself to T going between zero and, let's say, 2 pi, and then similarly with S going from zero up to 2 pi, and you imagine what, you know, that would be sort of a square region, just limiting yourself to that, you're actually going to get all of the points that you need to draw the Taurus.

And the basic reason for that is that as T ranges from 0 to 2 pi, cosine of T goes over its full range before it starts becoming periodic. Um, S of T does the same, and same deal with S. If you let S range from 0 to 2 pi, that covers a full period of cosine, a full period of S, so you'll get no new information by going elsewhere.

So what we can do is think about this portion of the TS plane kind of as living inside three-dimensional space. This is sort of cheating, but it's a little bit easier to do this than to imagine, you know, moving from some separate area into the space. At the very least, for the animation efforts, it's easier to just start it off in 3D. Um, so what I'm thinking about here, this square is representing that TS plane, and for this function, which is taking all of the points in this square as its input and outputs a point in three-dimensional space, you can think about how those points move to their corresponding output points.

Okay, so I'll show that again. We start off with our TS plane here, and then whatever your input point is, if you were to follow it, and you were to follow it through this whole transformation, the place where it lands would be the corresponding output of this function. And one thing I should mention is all of the interpolating values, as you—in between these—don't really matter. A function is really a very static thing; there's just an input and there's an output.

And if I'm thinking in terms of a transformation, actually moving it, there's a little bit of, uh, a little bit of magic sauce that has to go into making an animation do this. And in this case, I kind of put it into two different phases to sort of roll up one side and roll up the other. It doesn't really matter, but the general idea of starting with a square and somehow warping that—however you do choose to warp it—is actually a pretty powerful thought.

And as we get into multivariable calculus and you start thinking a little bit more deeply about surfaces, I think it really helps if you, you know, you think about what a slight little movement over here on your input space would look like. What happens to that tiny little movement or that tiny little traversal? What it looks like if you did that same movement somewhere on the output space? Um, and you'll get lots of chances to wrap your mind about this and engage with the idea. But here, I just want to get your minds churning on this pretty neat way of viewing what functions are doing.

More Articles

View All
Warren Buffett Just Made a Huge Bet on a Hidden Stock.
Warren Buffett has very sneakily just made a rather sizable bet on a new stock, and it’s not your typical Buffett-style investment, like what he did last year with Activision Blizzard stock. Buffett has just placed another big Arbitrage bet that a certain…
Analyzing related rates problems: expressions | AP Calculus AB | Khan Academy
The base ( b ) of the triangle is decreasing at a rate of 13 meters per hour, and the height ( h ) of the triangle is increasing at a rate of 6 meters per hour. At a certain instant ( t_0 ), the base is 5 meters and the height is 1 meter. What is the rat…
Incentives for DROs not to go 'rogue'
There are two dispute resolution organizations or Dr. Alto and Tenna. Tenna and Alto have both been in business for a while. They’re both well-respected firms. Both have similar amounts of capital and similarly sized customer bases. They have mutual agree…
Racing 800 Miles in the Desert—in a VW Bug | National Geographic
The Baja 1000 is just one of the toughest off-road races that exists. Uh, it’s in Baja California in Mexico down the peninsula. It’s pretty much the race that you aspire to do in off-road racing. This year’s event is 828 miles and has, I believe, a 33-hou…
Curvature formula, part 1
So, in the last video, I talked about curvature and the radius of curvature. I described it purely geometrically, where I’m saying you imagine driving along a certain road. Your steering wheel locks, and you’re wondering what the radius of the circle that…
Cave Diver vs. Tricky Maya Elves | Campfire Stories
I work in lots of sonatas in caves. The North day is basically a flooded cave, and I by myself, and I hear this lation. Whose it was there, and nobody answer? And then I heard a splash again, and I even have waves. I swear I have waves, the words: what’s …