yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Transformations, part 3 | Multivariable calculus | Khan Academy


3m read
·Nov 11, 2024

So I want to give you guys just one more example of a transformation before we move on to the actual calculus of multivariable calculus. In the video on parametric surfaces, I gave you guys this function here. It's a very complicated looking function; it's got a two-dimensional input and a three-dimensional output. I talked about how you can think about it as drawing a surface in three-dimensional space, and that one came out to be the surface of a donut, which we also call a Taurus.

So what I want to do here is talk about how you might think of this as a transformation. And first, let me just get straight what the input space here is. So the input space, you could think about it as the entire TS plane, right? We might draw this as the entire T-axis and the S-axis, and just everything here, and see where it maps. But you can actually go to just a small subset of that. So if you limit yourself to T going between zero and, let's say, 2 pi, and then similarly with S going from zero up to 2 pi, and you imagine what, you know, that would be sort of a square region, just limiting yourself to that, you're actually going to get all of the points that you need to draw the Taurus.

And the basic reason for that is that as T ranges from 0 to 2 pi, cosine of T goes over its full range before it starts becoming periodic. Um, S of T does the same, and same deal with S. If you let S range from 0 to 2 pi, that covers a full period of cosine, a full period of S, so you'll get no new information by going elsewhere.

So what we can do is think about this portion of the TS plane kind of as living inside three-dimensional space. This is sort of cheating, but it's a little bit easier to do this than to imagine, you know, moving from some separate area into the space. At the very least, for the animation efforts, it's easier to just start it off in 3D. Um, so what I'm thinking about here, this square is representing that TS plane, and for this function, which is taking all of the points in this square as its input and outputs a point in three-dimensional space, you can think about how those points move to their corresponding output points.

Okay, so I'll show that again. We start off with our TS plane here, and then whatever your input point is, if you were to follow it, and you were to follow it through this whole transformation, the place where it lands would be the corresponding output of this function. And one thing I should mention is all of the interpolating values, as you—in between these—don't really matter. A function is really a very static thing; there's just an input and there's an output.

And if I'm thinking in terms of a transformation, actually moving it, there's a little bit of, uh, a little bit of magic sauce that has to go into making an animation do this. And in this case, I kind of put it into two different phases to sort of roll up one side and roll up the other. It doesn't really matter, but the general idea of starting with a square and somehow warping that—however you do choose to warp it—is actually a pretty powerful thought.

And as we get into multivariable calculus and you start thinking a little bit more deeply about surfaces, I think it really helps if you, you know, you think about what a slight little movement over here on your input space would look like. What happens to that tiny little movement or that tiny little traversal? What it looks like if you did that same movement somewhere on the output space? Um, and you'll get lots of chances to wrap your mind about this and engage with the idea. But here, I just want to get your minds churning on this pretty neat way of viewing what functions are doing.

More Articles

View All
How to Slow Aging (and even reverse it)
Part of this video is sponsored by LastPass. More about LastPass at the end of the show. This is a video about research into slowing the rate of aging and extending the human lifespan. So, before I filmed this, I wanted to know: What do you guys generall…
Creativity break: how do you apply creativity to biology? | High school biology | Khan Academy
[Music] [Music] One question that people ask me is, how do I apply creativity to the presentations that I give? My secret sauce is to come up with a visual image that anybody—I don’t care if you’re an adult, whether you’re a fifth grader or second grader…
Scaling Culture | Jason Kilar, former Hulu CEO
So my name is Jason. Um, uh, I was asked to, uh, speak about culture, and I’m going to do it through two lenses: my observations about culture and then, really importantly for this day, my observations of how to efficiently scale culture. I wanted to sha…
5 Financial Habits To Do Before 30
But you want to immune confidence and basically say to me with your eyes, “I’m ready to rumble.” You want a rock? Bring it on! I can tell right there from the aura, the vibe. You haven’t even said a word yet, and I know right there if you’re a winner or a…
David Deutsch: Knowledge Creation and The Human Race, Part 1
My goal would be not to do yet another podcast with David Deutsch; there are plenty of those. I would love to tease out some of the very counter-intuitive learnings, put them down canonically in such a way that future generations can benefit from them, an…
Double replacement reactions | Chemistry | Khan Academy
Check this out! I have two clear, colorless solutions over here. Let’s pour them into each other. We pour the first one, and we pour the second one, and boom! We now get a white color solution. Here’s another example: again, two colorless solutions. We p…