yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of inverse functions: from equation | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let ( F(x) ) be equal to ( 12x^3 + 3x - 4 ). Let ( H ) be the inverse of ( F ). Notice that ( F(-2) ) is equal to (-14) and then they're asking us what is ( H'(-14) ).

If you're not familiar with how functions and their derivatives relate to their inverses, well, this will seem like a very hard thing to do. If you attempt to take the inverse of ( F ) to figure out what ( H ) is, it will be tough to find, to take, to figure out the inverse of a third-degree polynomial defined function like this.

So, the key property to realize is that if ( F ) and ( H ) are inverses, then ( H'(x) ) is going to be equal to ( \frac{1}{F'(H(x))} ). You could now use this in order to figure out what ( H'(-14) ) is.

Now, I know what some of you are thinking, because it's exactly what I would be thinking if someone just sprung this on me: where does this come from? I would tell you this comes straight out of the chain rule.

We know that if we have a function and its inverse, that ( F(H(x)) ) is equal to ( x ). This literally comes out of them being each other's inverses. We could have also said ( H(F(x)) ) will also be equal to ( x ). Remember, ( F ) is going to map, or ( H ) is going to map from some ( x ) to ( H(x) ), and then ( F ) is going to map back to that original ( x ). That’s what inverses do. So, they are inverses; this is by definition.

But then if you took the derivative of both sides of this, what would you get? Let me do that. If you take the derivative of both sides, ( \frac{d}{dx} ) on the left-hand side and ( \frac{d}{dx} ) on the right-hand side, and I think you see where this is going.

You're essentially going to get a version of that. The left-hand side, using the chain rule, you're going to get ( F'(H(x)) \cdot H'(x) ) straight out of the chain rule is equal to the derivative of ( x ), which is just going to be equal to one. Then you divide both sides by ( F'(H(x)) ) and you get our original property there.

So now, with that out of the way, let's just actually apply this. We want to evaluate ( H'(-14) ).

Now, have they given us ( H(-14) )? Well, they didn't give it to us explicitly, but we have to remember that ( F ) and ( H ) are inverses of each other. So if ( F(-2) ) is ( -14 ), well, ( H ) is going to go from the other way around. If you input ( -14 ) into ( H ), you're going to get ( -2 ). So ( H(-14) ) is going to be equal to ( -2 ).

Once again, they are inverses of each other. So ( H(-14) ) is equal to ( -2 ). That's what the inverse function will do. If ( F ) goes from ( -2 ) to ( -14 ), ( H ) is going to go from ( -14 ) back to ( -2 ).

Now we want to evaluate ( F'(-2) ). Let’s figure out what ( F'(-2) ) is.

So, ( F'(x) ) is equal to ( 36x^2 + 3 ). We’re just going to leverage the power rule. So ( 3 \times 12 ) is ( 36 ) multiplied by ( x^{3-1} ), which is just ( x^2 ), plus the derivative of ( 3x ) with respect to ( x ). Well, that's just going to be ( 3 ).

The derivative of a constant is just going to be zero, so that’s ( F'(x) ). So ( F'(-2) ) is going to be ( 36(-2)^2 + 3 ).

Calculating that gives us ( 36 \times 4 + 3 ) which is ( 144 + 3 ), so that's equal to ( 147 ).

So, this denominator right here is going to be equal to ( 147 ), and this whole thing is equal to ( \frac{1}{147} ).

This was a, you know, this isn’t something you’re going to see every day. This isn’t a typical problem in your calculus class, but it's interesting.

More Articles

View All
Snagging a Stag | Primal Survivor
These Sami reindeer are semi. While they have sharp antlers, a swift kick, and can pull a 250-pound load with ease, it takes a lot of strength and skill to pull in a reindeer without injuring yourself or the animal. I’ve managed to separate this stag from…
Innovation Requires Decentralization and a Frontier
Innovation requires a couple of things. One of the things that it seems to require is decentralization. I don’t think it’s a coincidence that the Athenian city-states, the Italian city-states, or even the United States, when it was more free-form and invo…
Documenting Democracy | Podcast | Overheard at National Geographic
Lots of tear gas, lots of rubber bullets, and I think I lived with garlic and onions in my pockets for like several months because that’s one common way to kind of get rid of the effects of tear gas. People would just hand those to you to help you out whe…
Spend More Time Making the Big Decisions
Uh, best piece of advice for someone 24 or a new Millennial, uh, out of college, I would say, you know, just spend more time on making the big decisions. There’s basically three really big decisions that you make around that age: it’s where you live, who…
Seth Klarman's Warning for "The Everything Bubble"
The first thing is, we’ve been in an everything bubble. I think that a lot of money has flowed into virtually everything. You’ve had speculation during that bubble in all kinds of things from crypto to meme stocks to SPACs. That day is Seth Klam, and he …
What's in Dry-Erase Markers? | Ingredients With George Zaidan (Episode 10)
What’s in here? What does it do? And can I make it from scratch? Pick the stuff, it’s on your stuff. Ingredients: Dry erase markers are magical. I mean, you write on a smooth, hard surface like this dry erase board or a mirror, and then whatever you writ…