yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of inverse functions: from equation | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let ( F(x) ) be equal to ( 12x^3 + 3x - 4 ). Let ( H ) be the inverse of ( F ). Notice that ( F(-2) ) is equal to (-14) and then they're asking us what is ( H'(-14) ).

If you're not familiar with how functions and their derivatives relate to their inverses, well, this will seem like a very hard thing to do. If you attempt to take the inverse of ( F ) to figure out what ( H ) is, it will be tough to find, to take, to figure out the inverse of a third-degree polynomial defined function like this.

So, the key property to realize is that if ( F ) and ( H ) are inverses, then ( H'(x) ) is going to be equal to ( \frac{1}{F'(H(x))} ). You could now use this in order to figure out what ( H'(-14) ) is.

Now, I know what some of you are thinking, because it's exactly what I would be thinking if someone just sprung this on me: where does this come from? I would tell you this comes straight out of the chain rule.

We know that if we have a function and its inverse, that ( F(H(x)) ) is equal to ( x ). This literally comes out of them being each other's inverses. We could have also said ( H(F(x)) ) will also be equal to ( x ). Remember, ( F ) is going to map, or ( H ) is going to map from some ( x ) to ( H(x) ), and then ( F ) is going to map back to that original ( x ). That’s what inverses do. So, they are inverses; this is by definition.

But then if you took the derivative of both sides of this, what would you get? Let me do that. If you take the derivative of both sides, ( \frac{d}{dx} ) on the left-hand side and ( \frac{d}{dx} ) on the right-hand side, and I think you see where this is going.

You're essentially going to get a version of that. The left-hand side, using the chain rule, you're going to get ( F'(H(x)) \cdot H'(x) ) straight out of the chain rule is equal to the derivative of ( x ), which is just going to be equal to one. Then you divide both sides by ( F'(H(x)) ) and you get our original property there.

So now, with that out of the way, let's just actually apply this. We want to evaluate ( H'(-14) ).

Now, have they given us ( H(-14) )? Well, they didn't give it to us explicitly, but we have to remember that ( F ) and ( H ) are inverses of each other. So if ( F(-2) ) is ( -14 ), well, ( H ) is going to go from the other way around. If you input ( -14 ) into ( H ), you're going to get ( -2 ). So ( H(-14) ) is going to be equal to ( -2 ).

Once again, they are inverses of each other. So ( H(-14) ) is equal to ( -2 ). That's what the inverse function will do. If ( F ) goes from ( -2 ) to ( -14 ), ( H ) is going to go from ( -14 ) back to ( -2 ).

Now we want to evaluate ( F'(-2) ). Let’s figure out what ( F'(-2) ) is.

So, ( F'(x) ) is equal to ( 36x^2 + 3 ). We’re just going to leverage the power rule. So ( 3 \times 12 ) is ( 36 ) multiplied by ( x^{3-1} ), which is just ( x^2 ), plus the derivative of ( 3x ) with respect to ( x ). Well, that's just going to be ( 3 ).

The derivative of a constant is just going to be zero, so that’s ( F'(x) ). So ( F'(-2) ) is going to be ( 36(-2)^2 + 3 ).

Calculating that gives us ( 36 \times 4 + 3 ) which is ( 144 + 3 ), so that's equal to ( 147 ).

So, this denominator right here is going to be equal to ( 147 ), and this whole thing is equal to ( \frac{1}{147} ).

This was a, you know, this isn’t something you’re going to see every day. This isn’t a typical problem in your calculus class, but it's interesting.

More Articles

View All
Mary Devotion Around the World | Explorer
[Music] I was approached by National Geographic last year to photograph people’s relationship with Mary. I traveled all around the world to some of the most unexpected places to document this project. I have my own questions about my faith. I was raised C…
Karn Saroya on the Capital-Light Way to Start an Insurance Business
All right, and so today we have Karnes Roya, the CEO of Cover, which was in the Winter 2016 batch of YC. So, Karnes, what does Cover do for us? “All, thanks for hosting me! I appreciate it. So, you can think of Cover as a multi-line national property ins…
Advice For Young Entrepreneurs
When young entrepreneurs ask me for advice, I generally tell them to optimize for their alumni network. Your future determinant of success will be most determined by who you are surrounded with. These people will force you to up your game. They’ll be your…
How Were the Pyramids Built?
Okay, so we’re going for a ride around the pyramids. The Great Pyramid was the tallest man-made structure for nearly 4,000 years, only surpassed by a large margin by the Eiffel Tower in 1889, 147 m high. You are interested in climbing? Yeah, it’s climbing…
A 12-Year-Old Horse Jockey Races Towards His Dream | Short Film Showcase
[Music] The dreams to be a champion. Jackie, just, that’s it! Hold the [Music] horse, turn him, R, night him, kick, go up, and [Music]. Just about finding reserves as they race up towards the— we have a real tussle here. We going. It’s a great ball, and …
15 Powerful Mindset Shifts
I can’t do it. This is too hard. It’s too late. What if you took these words and turned them the other way around? In your journey through life, your mindset plays a vital role in shaping your experience and building your success. It’s like the architect …