yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivatives of inverse functions: from equation | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let ( F(x) ) be equal to ( 12x^3 + 3x - 4 ). Let ( H ) be the inverse of ( F ). Notice that ( F(-2) ) is equal to (-14) and then they're asking us what is ( H'(-14) ).

If you're not familiar with how functions and their derivatives relate to their inverses, well, this will seem like a very hard thing to do. If you attempt to take the inverse of ( F ) to figure out what ( H ) is, it will be tough to find, to take, to figure out the inverse of a third-degree polynomial defined function like this.

So, the key property to realize is that if ( F ) and ( H ) are inverses, then ( H'(x) ) is going to be equal to ( \frac{1}{F'(H(x))} ). You could now use this in order to figure out what ( H'(-14) ) is.

Now, I know what some of you are thinking, because it's exactly what I would be thinking if someone just sprung this on me: where does this come from? I would tell you this comes straight out of the chain rule.

We know that if we have a function and its inverse, that ( F(H(x)) ) is equal to ( x ). This literally comes out of them being each other's inverses. We could have also said ( H(F(x)) ) will also be equal to ( x ). Remember, ( F ) is going to map, or ( H ) is going to map from some ( x ) to ( H(x) ), and then ( F ) is going to map back to that original ( x ). That’s what inverses do. So, they are inverses; this is by definition.

But then if you took the derivative of both sides of this, what would you get? Let me do that. If you take the derivative of both sides, ( \frac{d}{dx} ) on the left-hand side and ( \frac{d}{dx} ) on the right-hand side, and I think you see where this is going.

You're essentially going to get a version of that. The left-hand side, using the chain rule, you're going to get ( F'(H(x)) \cdot H'(x) ) straight out of the chain rule is equal to the derivative of ( x ), which is just going to be equal to one. Then you divide both sides by ( F'(H(x)) ) and you get our original property there.

So now, with that out of the way, let's just actually apply this. We want to evaluate ( H'(-14) ).

Now, have they given us ( H(-14) )? Well, they didn't give it to us explicitly, but we have to remember that ( F ) and ( H ) are inverses of each other. So if ( F(-2) ) is ( -14 ), well, ( H ) is going to go from the other way around. If you input ( -14 ) into ( H ), you're going to get ( -2 ). So ( H(-14) ) is going to be equal to ( -2 ).

Once again, they are inverses of each other. So ( H(-14) ) is equal to ( -2 ). That's what the inverse function will do. If ( F ) goes from ( -2 ) to ( -14 ), ( H ) is going to go from ( -14 ) back to ( -2 ).

Now we want to evaluate ( F'(-2) ). Let’s figure out what ( F'(-2) ) is.

So, ( F'(x) ) is equal to ( 36x^2 + 3 ). We’re just going to leverage the power rule. So ( 3 \times 12 ) is ( 36 ) multiplied by ( x^{3-1} ), which is just ( x^2 ), plus the derivative of ( 3x ) with respect to ( x ). Well, that's just going to be ( 3 ).

The derivative of a constant is just going to be zero, so that’s ( F'(x) ). So ( F'(-2) ) is going to be ( 36(-2)^2 + 3 ).

Calculating that gives us ( 36 \times 4 + 3 ) which is ( 144 + 3 ), so that's equal to ( 147 ).

So, this denominator right here is going to be equal to ( 147 ), and this whole thing is equal to ( \frac{1}{147} ).

This was a, you know, this isn’t something you’re going to see every day. This isn’t a typical problem in your calculus class, but it's interesting.

More Articles

View All
Chase Adam at Startup School 2013
Hi everyone. My name is Chase, and like Jessica said, we recently had the privilege of being the first nonprofit to go through Y Combinator. So, to tell you just a quick one minute about Watsi, we’re a nonprofit crowdfunding platform. The easiest way to t…
Monopsony employers and minimum wages
In this video, we’re going to review what we’ve already learned about monopsony employers that we’ve covered in a previous video. But then we’re going to add a twist of adding a minimum wage and see what happens. And it’s actually interesting; it’s actual…
Stringless Yo-Yo!
Can you just like … Yo-Yo like a basic Yo-Yo? Yeah, like this. But this is not a basic Yo-Yo. No! That is awesome! Nicely done! This is Ben Conde, he’s got a brand new channel on YouTube which is about Yo-Yoing like a crazy person. But, I’m going t…
Private jet expert reacts!
Why would I go to an unknown plane owner compared to a corporation? Because here’s the thing: plane owners are notorious for skimping on maintenance. Okay, I’m sorry, Kev, this is just not true. You really can’t—you cannot skimp on maintenance that’s req…
How to Build RELIABLE Passive Income for 2022
So back when I was at uni, four or five years ago, I remember having this moment where one day I searched for physiotherapy jobs in my city. It was at that exact moment of my life I realized I was never really going to make all that much money as a physio…
Creating a Zombie Soap Opera | StarTalk
What I did is I made it a super. I was like, what if people kiss while zombies are trying to eat them? And then people were like, I like this romance stuff. Relationships, really? Yeah, I mean, I don’t know. I’m interested in that kind of stuff. I mean, I…