yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Measuring Mangroves | Explorers in the Field
(Gentle music) - I remember the first time that I snorkeled. We jumped in the water and we saw many colorful fish. And it was unbelievable. So since then, I wanted to repeat that experience again. It wasn’t until I turned 24 when I had the opportunity to …
Super Reefs (Short Film) | Pristine Seas | National Geographic Society
Thank you. Can you see that sunrise? [Music] Foreign. [Music] Ly powerful memory, vivid memory, memory of the most beautiful and healthy pristine coral reef. Foreign. That, you know, it took a year to prepare for this expedition, but actually, it’s tak…
Being Unhappy Is Very Inefficient
Besides, I’m too smart for it. The other objection is I don’t want it to lower my productivity. I don’t want to have less desire or less work ethic. Fact-check, and that is true. The more happy you are, the more content and peaceful you are. That’s less l…
Building an Engineering Team by Ammon Bartram and Harj Taggar
As a slides of loading, there is no topic that should occupy your minds more as you build your company than bringing on the team that’s going to make your company successful as you move forward. Hajin Amin from Triple Byte, YC alumnus, is going to talk ab…
After the Avalanche: Life as an Adventure Photographer With PTSD (Part 1) | Nat Geo Live!
I’m gonna start before any adventures for the magazine, before I was out in Antarctica, before any of this happened. I’m gonna start by telling you how cool I was as a kid, because honestly, I was pretty cool. I was the first hipster ever, sideways trucke…
Rockets 101 | National Geographic
[Narrator] The ground begins to tremble. [Announcer] Three. [Narrator] Massive engines roar to life. [Announcer] Two. [Narrator] Billowing clouds of exhaust. [Announcer] One. [Narrator] And then a blinding pillar of fire. [Announcer] Liftoff…