yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Rebuilding the World of 1620 | Saints & Strangers
I’ve covered myself a little. I do not sleep safe, nor do I seek glory at war. If it’s something like this, where it’s 1620, you finally got to get yourself immersed into the era. To start with, I did a lot of research on the pilgrims themselves: who they…
The Science of the Friend Zone
Hey, Vsauce. Michael here. And today we’re going to talk about the science of the friend zone. You know, the experience of liking someone and then finding out that they would rather just be friends with you. Why does it happen? If there’s hope of escaping…
If You Know These 15 Words, Your English is EXCELLENT!
I’ve got 15 words - and if you know all of them, your English vocab is better than 97% of people worldwide. In other words, you’re an English vocab pro. So, do you think you’re in the top 3% of English speakers? Let’s find out. Here’s how this is going to…
How Scientists and Citizens Are Protecting Ancient Ruins in Peru | National Geographic
(Slow guitar music) In Peru, it is very common that archaeological sites are surrounded by local communities, villages, towns, where people live usually in the most traditional ways. Pachacamac is a huge archaeological site south of Lima. Around it, we ha…
Covalent network solids | Intermolecular forces and properties | AP Chemistry | Khan Academy
So we’ve already talked about multiple types of solids. We’ve talked about ionic solids, that’s formed when you have ions that are attracted to each other, and they form these lattice structures. We have seen metallic solids, and we’ve seen thought about…
Proving the SAS triangle congruence criterion using transformations | Geometry | Khan Academy
What we’re going to do in this video is see that if we have two different triangles and we have two sets of corresponding sides that have the same length. For example, this blue side has the same length as this blue side here, and this orange side has the…