yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Why We're Jerks Online
Hello everyone! October 2019 is over, which means that it’s time for the next Q&A. As most of you know, there’s a Patreon edition and a public edition. In this public edition, I’ll talk about the effect of the internet in regards to the shadow, which …
How Bird Wings Work (Compared to Airplane Wings) - Smarter Every Day 62
[Music] Hey, it’s me D, and welcome back to Smarter Every Day. So, some of my favorite things to learn are those things that I’ve seen for several years, and I’ve made a lot of observations, and I kind of think I get it, you know? I mean, like really get …
Graphical limit where function undefined
So we have the graph of ( y = f(x) ) right over here. What we want to do is figure out the limit of ( f(x) ) as ( x ) approaches -4. So, what does that mean? Well, a limit is saying, “What is my function approaching as the input of that function approach…
Ben Silbermann at Startup School SV 2016
Good morning! Nice to see everyone here. Uh, my name is Ali Rani. I’m a partner at Y Combinator. I run our late-stage fund; it’s called the Y Combinator Continuity Fund. I couldn’t be happier to be here today to conduct a fireside chat with Ben Berman, wh…
Charitable giving | Financial goals | Financial Literacy | Khan Academy
So let’s talk a little bit about charitable giving, and this one is close to my heart because I run a non-profit. Why do folks donate to charity? Well, you might have your own motivations. For most folks, I think it just feels good. They might feel that …
The Sea Otter's Enchanted Forest | America's National Parks
Just offshore, the shallow coastal waters are also a refuge for marine mammals, such as the sea lions that hang out on the rocks or hunt beneath the sea. Here, in their own enchanted forest, the kelp beds are several stories deep. [Music] There are seals…