yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
The Trouble with the Electoral College
In a fair democracy, everyone’s vote should count equally, but the method that the United States uses to elect its president, called the electoral college, violates this principle by making sure that some people’s votes are more equal than others. The Ele…
Flying the Piaggio at 41,000 Feet (Max Altitude!)
Hello from beautiful Jackson Hall, Wyoming, one of my all-time favorite airports to fly out of. We’re back in the Piaggio; you guys have been asking for more content with this thing, so here we are. Today, we’re going to push this airplane to its limits, …
Kevin O'Leary: 40 Years of Photography
Amateur shutterbug since the 70s, now he’s selling his prints and giving the proceeds to help young Canadian entrepreneurs. Earlier today, he walked me through his exhibit, “40 Years of Photography.” It’s at First Canadian Place here in Toronto. So here’s…
The structures of informational texts | Reading | Khan Academy
Hello readers! Let’s talk about structure. When architects and engineers design a building, one of the considerations they have to make is structural support. How’s this thing going to stay upright? How do we make sure it doesn’t blow over in the wind or …
This Is The ONLY Video You Need To Watch To Start Your YouTube Channel
You want to start a YouTube channel but you’re lost. There are tons of videos and you’re getting overwhelmed. But don’t worry, I got you, and by the end of this video, you will exactly know where to start, what to do, and how to do it. This is the only vi…
Cortex Subtle T's & Hoodies! Annual Limited Drop!
For years I struggled to find the perfect t-shirt, sadly without success. Then, over at Cortex Incorporated, where we mostly make premium paper productivity products, we pondered: can we also produce the perfect shirt? Something everyday casual, but that…