yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Charlie Munger & Warren Buffett: The Dangers of EBITDA
If somebody is, if they think you’re focusing on EBITDA, they may arrange things so that that number looks bigger than it really is. It’s bigger than it really is anyway. I mean, the implication of that number is that it has great meaning. You take teleco…
National Geographic Takes on New York Fashion Week | Fit for a Queen | NYFW
[Applause] Queens is a project about female leadership, not only in front of the camera but behind the camera, telling a story about nature in a new way. And there couldn’t be a better time in history right now to be getting that message across. The titl…
Announcing Work at a Startup
Alright guys, so we are here today to talk about work at a startup. Let’s really quickly do some introductions. So Jared, why don’t you start? Hey, I’m Jared. I’m a partner here at YC. The way I got into YC was I did a YC company in one of the earliest b…
MY CRYPTO WAS STOLEN | Why Celsius REALLY Collapsed
Foreign guys, it’s Graham here. So, I don’t think this is a video that anyone wants to make, and I’ve been holding off from talking about this while we wait for any new developments. But I think enough time has passed to share my thoughts about what’s goi…
Sketching exponentials - examples
Now we’re going to take the ideas from the last video and learn how to sketch in these exponentials really rapidly. Now I want to move this up, and we’ll do some a couple of examples. Here’s an example circuit I’ve already set up. It’s an RC circuit. Thi…
Area of trapezoid on the coordinate plane | High School Math | Khan Academy
So we have a trapezoid here on the coordinate plane, and what we want to do is find the area of this trapezoid just given this diagram. Like always, pause this video and see if you can figure it out. Well, we know how to figure out the area of a trapezoi…