yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Emirate of Diriyah as the first Saudi State
The history of the Saudi state and the Saudi dynasty really becomes interesting in 1744 in the town of Diriyah, which is very close to the modern city of Riyadh in the region of the Arabian Peninsula known as the Najd. This is an important term to know if…
Looking back at the text for evidence | Reading | Khan Academy
Hello readers! Today I’m in a courthouse, watching people argue about laws so we can learn about the power of evidence. Evidence is essentially proof; it is the facts that help you know that something is true. Let’s listen in. “And your honor, that is wh…
Loneliness
Everybody feels lonely from time to time. When we have no one to sit next to at lunch, when we move to a new city, or when nobody has time for us at the weekend. But over the last few decades, this occasional feeling has become chronic for millions. In th…
Thermodynamics vs. kinetics | Applications of thermodynamics | AP Chemistry | Khan Academy
In chemistry, it’s important to distinguish between thermodynamics and kinetics. For example, if we think about the conversion of carbon as a solid in the diamond form to carbon as a solid in the graphite form, thermodynamics tells us what will happen. Wi…
How can I review the security of my account?
So Guemmy, you’ve given us a lot of tips and things to think about. Is there a way to just see where we are in terms of our account security? Yeah. One thing I love that’s evolved in the industry over the last few years is a lot of the tech providers hav…
Introduction to Middle school physics | Khan Academy
Hi everyone! Sal Khan here and welcome to Middle School Physics. I have Iman Howard who manages all of our STEM content. Iman, why should folks be excited about Middle School Physics? So, Middle School Physics is like the only science out there that exp…