yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Going Undercover to Save Manta Rays | Podcast | Overheard at National Geographic
Is a woman in her early 20s, and she is very far from home. Don’t ask where. I’m gonna try to say this without saying, like, country names, because I feel like that could expose me to danger. We can tell you it’s early 2018, and she’s in a major city in E…
Perfect progressive aspect | The parts of speech | Grammar | Khan Academy
Hello, grammarians! Previously, I had covered three of the basic aspects of English, and that’s simple, perfect, and progressive. So, there’s just one more, and it’s a combination of the last two, and it’s called the perfect progressive. To recap what t…
Input approach to determining comparative advantage | AP Macroeconomics | Khan Academy
In other videos, we have already looked at production possibility curves and output tables in order to calculate opportunity costs of producing a certain product in a certain country. Then we use that to think about comparative advantage. We’re going to d…
Solving 3-digit addition in your head | 2nd grade | Khan Academy
[Voiceover] What I want to do in this video is go over some techniques for doing mental addition. Now, if I saw something like 355 plus 480, if you have some paper around, you could write these numbers down and do your traditional addition, but you might …
Exclusive: Matt Damon Gets Emotional About Global Water Crisis | National Geographic
So let’s just have a fun conversation about poop, okay? Because how else does one really talk about this? It strikes me, in our trying to report this story, photograph this story, and write about it that one of the big issues is it’s a hard thing to talk …
Spinning Black Holes
On November 22, 2014, a burst of x-rays was detected by ASASSN—that’s the All Sky Automated Survey for Super Novae. But this was no supernova. The signal came from the center of a galaxy around 290 million light-years away, and what we now believe happene…