yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ).

With the velocity vector ( V(T) ) equal to, and the x-component of the velocity vector is ( \cos(T^2) ), and the y-component of the velocity vector is ( e^{0.5T} ). At ( T=1 ), the particle is at the point ( (3, 5) ).

All right, find the x-coordinate of the position of the particle at time ( T=2 ). All right, so how do we think about this? Well, you could view the x-coordinate at time ( T=2 ). So, let's say, we could say ( X(2) ), which they don't give to us directly. But we could say that's going to be ( X(1) ) plus some change in x as we go from ( T=1 ) to ( T=2 ).

But what is this going to be? Well, we know what the velocity is, and so the velocity, especially the x-component, we can really focus on the x-component for this first part because we only want to know the x-coordinate of the position of the particle. Well, we know we're going—we know the x-component of velocity is a function of ( T ): ( \cos(T^2) ).

If you take your velocity in a certain dimension and then multiply it times a very small change in time, ( dT ), this would give you your very small change in x. If you multiply velocity times change in time, it'll give you a displacement. But what we can do is we can sum up all of the changes in time from ( T=1 ) to ( T=2 ).

Remember this is the change in x from ( T=1 ) to ( T=2 ). So what we have right over here, we can say that ( X(2) ), which is what we're trying to solve, is going to be ( X(1) ). They give that at time ( T=1 ), the particle is at the point ( (3, 5) ). Its x-coordinate is three, so this right over here is three.

Then, our change in x from ( T=1 ) to ( T=2 ) is going to be this integral: the integral from ( T=1 ) to ( T=2 ) of ( \cos(T^2) dT ).

Just to make sure we understand what's going on here, remember how much we are moving over a very small ( dT ). Well, you take your velocity in that dimension times ( dT ), it'll give you your displacement in that dimension, and then we sum them all up from ( T=1 ) to ( T=2 ).

In this part of the AP test, we are allowed to use calculators, and so, let's use one. All right, so there's my calculator, and I can evaluate. So let's see, I want to evaluate three plus the definite integral.

I click on math, and then I can scroll down to function integral right there, the definite integral of—and I make sure I'm in radian mode, which that's what you should assume—so ( \cos(T^2) ).

Now, I'll use ( x ) as my variable of integration, so I'll say ( \cos(x) ) of ( x^2 ), and my variable of integration is ( x ). I'm really integrating ( \cos(x^2) , dx ) but it'll give the same value from 1 until 2.

Now, I let the calculator munch on it a little bit, and I get approximately 2.557. So this is approximately 2.55. Did I—let me make sure that I added the three? Yeah, three plus that definite integral from ( 1 ) to ( 2 ) is 2.55, and I just rounded that. So there you go.

More Articles

View All
Deriving Lorentz transformation part 2 | Special relativity | Physics | Khan Academy
We left off in the last video trying to solve for gamma. We set up this equation, and then we had the inside that, well, look, we could pick a particular event that is connected by a light signal. In that case, X would be equal to CT, but also X Prime wou…
Metaverse: Beyond Human
Imagine a world where you wake up, head to the office in the morning, to a party with friends in the evening, and then a live concert at midnight, all while sitting in the warmth of your home or from the comfort of your bed. That might just be part of hum…
Watch: Decomposing Dolphin Brings New Life to Seafloor | Expedition Raw
This common dolphin that just happened to wash up on the beach where Noah gave me a call said, “Hey, instead of putting in the dumpster, would you like to use this for your project?” It was the perfect opportunity. We’re going to try to better understand …
Example translating parabola
Function G can be thought of as a translated or shifted version of f. Of x is equal to x^2. Write the equation for G of x. Now pause this video and see if you can work this out on your own. All right, so whenever I think about shifting a function, and i…
The 7 BEST Side Hustles To Start ASAP
What’s up, Graham? It’s guys here! So, you know what’s cooler than having one source of income? Seven different sources of income! And the average millionaire tends to agree with this too, at least according to their tax returns. Now seriously, the IRS a…
Gordon Ramsay Learns to Spearfish | Gordon Ramsay: Uncharted
Spear fishing in Hawaii, I’m like a fish out of water. Thank God I’ve got free diving champ Kimi for a guide. She makes it look so easy. [Music] Damn, she’s good. [Music] Despite my fetching camouflage, I can’t hit a thing. Don’t get frustrated! Oh man, …