yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Area of trapezoid on the coordinate plane | High School Math | Khan Academy


4m read
·Nov 11, 2024

So we have a trapezoid here on the coordinate plane, and what we want to do is find the area of this trapezoid just given this diagram. Like always, pause this video and see if you can figure it out.

Well, we know how to figure out the area of a trapezoid. We have videos where we derive this formula, but the area of a trapezoid, just put simply, is equal to the average of the lengths of the bases. We could say base 1 plus base 2 times the height.

So what are our bases here, and what is going to be our height over here? Well, we could call Base 1, we could call that segment CL, so it would be the length of segment CL right over here. I'll do that in magenta. That is going to be Base 1. Base 2, that could—let me do that in a different color—Base 2 would be the length of segment O, or B2, would be the length of seg OW right over there.

And then our height, our height H, well, that would just be an altitude, and they did one in a dotted line here. Notice it intersects B— the base one, I guess you could say segment CL— at a right angle here. This would be the height. So if we know the lengths of each of these, if we know each of these values which are the lengths of these segments, then we can evaluate the area of this actual trapezoid.

Once again, if this is completely unfamiliar to you or if you're curious, we have multiple videos talking about the proofs or how we came up with this formula. You can even break down a trapezoid into two triangles and a rectangle, which is one way to think about it.

But anyway, let's see how we could figure this out. The first one is: what is B1 going to be? B1 is the length of segment CL, and you could say, "Well look, we know what the coordinates of these points are." You could say, "Let's use the distance formula."

You could say, “Well, the distance formula is just an application of the Pythagorean theorem.” So this is just going to be our square root of our change in x squared. Our change in x is going to be this right over here. Notice we're going from x = -4 to x = 8 as we go from C to L, so our change in x is equal to 8 - -4, which is equal to 12.

And our change in y, we’re going from y = 1 to y = 5, so we could say our change in y is equal to 5 - -1, which of course is equal to 6. You see that here: 1, 2, 3, 4, 5, 6.

And the segment that we care about—its length that we care about—that’s just the hypotenuse of this right triangle that has one side 12 and one side 6. So the length of that hypotenuse, from the Pythagorean theorem, and as I mentioned, the distance formula is just an application of the Pythagorean theorem, this is going to be our change in x squared, 12 squared, plus our change in y squared, so plus 6 squared.

And this is going to be equal to 144 + 36. So the square root of 144 + 36 is 180, which is equal to—let's see—180 is 36 * 5, so that is 6 square roots of 5. Let me not skip some steps, so this is a square root of 36 * 5 which is equal to the square root of 36, which is 6, so 6 square root of 5.

Now, let's figure out B2. So B2, once again: change in x is the square root of change in x squared plus change in y squared. Well, let's see. If we're going from— we could set up a right triangle if you like— like this to figure those things out. So our change in x: we're going from x = -2 to x = 4, so our change in x is 6.

Our change in y, we are going from y = 5 to y = 8, so our change in y is equal to 3. So just applying the Pythagorean theorem to find the length of the hypotenuse here, it's going to be the square root of change in x squared, 6 squared, plus change in y squared, 3 squared.

Which is going to be equal to 36 + 9, which is 45. So square root of 45, which is equal to the square root of 9 * 5, which is equal to 3 square roots of 5. Now we only have one left to figure out. We have to figure out H; we have to figure out the length of H.

So H is going to be equal to— what is our—if we're going from W to N? Our change in x is 2. Change in x is equal to 2; we're going from x = 4 to x = 6. If you want to do that purely numerically, you would say, "Okay, our end point—our x value is 6; our starting point—our x value is 4, 6 - 4 is 2." You see that visually here.

So it's going to be the square root of 2 squared plus—let me write that radical a little bit better—so it's the square root of our change in x squared plus our change in y squared. Our change in y is -4. Change in y is -4, but we're going to square it, so it's going to become a positive 16.

So this is going to be equal to the square root of 4 + 16, square root of 20, which is equal to the square root of 4 * 5, which is equal to 2 * the square root of 5. It's nice that the square root of 5 keeps popping up.

And so now we just substitute into our original expression. The area of our trapezoid is going to be (12 * (6√5 + 3√5)) * (2√5). Let me close that parenthesis. So let's see how we can simplify this.

So (6√5 + 3√5) is 9√5. Let's see, the 1/2 * the 2, those cancel out to just be 1. So we're left with 9√5 * √5. Well, √5 * √5 is just going to be 5. So this is equal to 9 * 5, which is equal to 45 square units or units squared.

More Articles

View All
How to Reduce the Pain of Life | Arthur Schopenhauer
The nineteenth-century German philosopher Arthur Schopenhauer observed that nature is driven by an all-encompassing force, which he called Will, or more specifically, the Will-To-Live. This force is unconscious, aimless, and blind, and gives rise to an in…
Is War Over? — A Paradox Explained
Violence and war. The insane brutality of ISIS continues, the Russians are invading Ukraine, and the Palestinians and Israelis continue to slug it out. Does that make you feel gloomy? Well, don’t. Because if you look at the numbers, war actually seems to …
Signs Your Company Is Recovering From ZIRP
When my company was infected with ZPES, I was working three days a week and I got to enjoy a lot of hobbies. I got to travel; I lived the nomadic lifestyle, and I felt like I had great work-life balance. This week, my boss asked me to do something over th…
Impeachment | Foundations of American democracy | US government and civics | Khan Academy
What we’re going to focus on in this video is the idea of impeachment: what it is and how it works, and with a little bit of historical background. So before we go into impeachment, let’s just review some key ideas about the US government. We have this i…
HOW TO GET 1000 SUBSCRIBERS ON YOUTUBE IN 2022
What’s up you guys? It’s great I’m here! So really quick, before I get into the video, is really fun YouTube experiment. Hit the like button and comment anything down below for the almighty YouTube algorithm. The reason for this is because from all the r…
'Indian' or 'Native American'? [Reservations, Part 0]
The first people who lived here named themselves. Across the continent, in hundreds of languages, the word for people - or the First People - was what they used. Other people existed, to trade and talk and fight with. But the continent was vast and travel…