yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Animation basics: The optical illusion of motion - TED-Ed


4m read
·Nov 8, 2024

Take a series of still, sequential images.

Let's look at them one by one. Faster.

Now, let's remove the gaps, go faster still.

Wait for it ... Bam! Motion!

Why is that? Intellectually, we know we're just looking at a series of still images, but when we see them change fast enough, they produce the optical illusion of appearing as a single, persistent image that's gradually changing form and position.

This effect is the basis for all motion picture technology, from our LED screens of today to their 20th-century cathode ray forebearers, from cinematic film projection to the novelty toy. Even, it's been suggested, all the way back to the Stone Age when humans began painting on cave walls.

This phenomenon of perceiving apparent motion in successive images is due to a characteristic of human perception historically referred to as "persistence of vision." The term is attributed to the English-Swiss physicist Peter Mark Roget, who, in the early 19th century, used it to describe a particular defect of the eye that resulted in a moving object appearing to be still when it reached a certain speed.

Not long after, the term was applied to describe the opposite, the apparent motion of still images, by Belgian physicist Joseph Plateau, inventor of the phenakistoscope. He defined persistence of vision as the result of successive afterimages, which were retained and then combined in the retina, making us believe that what we were seeing is a single object in motion.

This explanation was widely accepted in the decades to follow and up through the turn of the 20th century when some began to question what was physiologically going on. In 1912, German psychologist Max Wertheimer outlined the basic primary stages of apparent motion using simple optical illusions.

These experiments led him to conclude the phenomenon was due to processes which lie behind the retina. In 1915, Hugo Münsterberg, a German-American pioneer in applied psychology, also suggested that the apparent motion of successive images is not due to their being retained in the eye but is superadded by the action of the mind.

In the century to follow, experiments by physiologists have pretty much confirmed their conclusions. As it relates to the illusion of motion pictures, persistence of vision has less to do with vision itself than how it's interpreted in the brain. Research has shown that different aspects of what the eye sees, like form, color, depth, and motion, are transmitted to different areas of the visual cortex via different pathways from the retina.

It's the continuous interaction of various computations in the visual cortex that stitch those different aspects together and culminate in the perception. Our brains are constantly working, synchronizing what we see, hear, smell, and touch into meaningful experience in the moment-to-moment flow of the present.

So, in order to create the illusion of motion in successive images, we need to get the timing of our intervals close to the speed at which our brains process the present.

So, how fast is the present happening according to our brains? Well, we can get an idea by measuring how fast the images need to be changing for the illusion to work.

Let's see if we can figure it out by repeating our experiment. Here's the sequence presented at a rate of one frame per two seconds with one second of black in between. At this rate of change, with the blank space separating the images, there's no real motion perceptible.

As we lessen the duration of blank space, a slight change in position becomes more apparent, and you start to get an inkling of a sense of motion between the disparate frames.

One frame per second. Two frames per second. Four frames per second. Now we're starting to get a feeling of motion, but it's really not very smooth. We're still aware of the fact that we're looking at separate images.

Let's speed up. Eight frames per second. 12 frames per second. It looks like we're about there. At 24 frames per second, the motion looks even smoother. This is standard full speed.

So, the point at which we lose awareness of the intervals and begin to see apparent motion seems to kick in at around eight to 12 frames per second. This is in the neighborhood of what science has determined to be the general threshold of our awareness of seeing separate images.

Generally speaking, we begin to lose that awareness at intervals of around 100 milliseconds per image, which is equal to a frame rate of around ten frames per second. As the frame rate increases, we lose awareness of the intervals completely and are all the more convinced of the reality of the illusion.

More Articles

View All
Mr. Freeman, part 57
I invite you to play the game. Let us not give a damn about your IQ for a minute and go to the depths of imagination. Look closer. Assume that there’s some kind of time shift, and you’re suddenly went thousands of years back in time. What you got with you…
Quadratic approximation formula, part 2
Line things up a little bit right here. All right, so in the last video, I set up the scaffolding for the quadratic approximation, which I’m calling q of a function, an arbitrary two-variable function which I’m calling f. The uh, the form that we have rig…
How to Think Clearly | The Philosophy of Marcus Aurelius
Almost everyone thinks they are a good thinker, but in reality, few people really are. A truly great thinker is constantly growing and evolving, so take a look around you: how many people do you see moving forward in life? How many people do you see solvi…
How to Identify a Brown Recluse Spider - Smarter Every Day 89
ADEs, me Destin. Welcome back to Smarter Every Day! So, we were in my daughter’s bathroom. I have been informed that there was a spider. That’s, well, I’m the dad; that’s what I do. I slay spiders. Before I destroy him in a fantastic way—well, however I …
Continuity over an interval | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is explore continuity over an interval. But to do that, let’s refresh our memory about continuity at a point. So we say that ( f ) is continuous when ( x ) is equal to ( c ) if and only if, so I’m going to make these t…
Will future robots & AI take over? | How Sci-Fi Inspired Science
Let’s face it, one of the worst things about adulting is having to clean. If we can get out of it in any way, we’ll do it. And since machines are made to make our lives easier, it makes sense we want a machine made to clean. But in sci-fi, we want to go o…