yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics by taking square roots examples | High School Math | Khan Academy


3m read
·Nov 11, 2024

So pause the video and see if you can solve for x here. Figure out which x values will satisfy this equation. All right, let's work through this, and the way I'm going to do this is I'm going to isolate the (x + 3) squared on one side. The best way to do that is to add 4 to both sides.

So adding 4 to both sides, we'll get rid of this 4, this subtracting 4, this negative 4 on the left-hand side, and so we're just left with (x + 3) squared. On the right-hand side, I'm just going to have (0 + 4). So (x + 3) squared is equal to 4.

Now, I could take the square root of both sides. Another way of thinking about it is, if I have something squared equaling 4, I could say that that something needs to either be positive or negative 2. One way of thinking about it is I'm saying that (x + 3) is going to be equal to the plus or minus square root of that 4. Hopefully, this makes intuitive sense for you.

If something squared is equal to 4, that means that this something—right over here—is going to be equal to the positive square root of 4 or the negative square root of 4, or it's going to be equal to positive or negative 2. We could write that (x + 3) could be equal to positive 2, or (x + 3) could be equal to negative 2.

Notice if (x + 3) was positive 2, then (2^2) is equal to 4. If (x + 3) was negative 2, then ((-2)^2) is equal to 4. So either of these would satisfy our equation.

If (x + 3) is equal to 2, we could just subtract 3 from both sides to solve for (x), and we're left with (x) is equal to negative 1. Over here, we could subtract 3 from both sides to solve for (x); so (x) is equal to negative 2 minus 3, which is negative 5.

So those are the two possible solutions, and you can verify that. Take these (x) values, substitute them back in, and then you can see. When you substitute (x) equals negative 1, then (x + 3) is equal to 2. (2^2) is 4 minus 4 is 0.

And when (x) is equal to negative 5, (negative 5 + 3) is negative 2. Squared is positive 4 minus 4 is also equal to 0. So these are the two possible (x) values that satisfy the equation.

Now, let's do another one that's presented to us in a slightly different way. So we are told that (f(x)) is equal to (x - 2) squared minus 9. Then we're asked, at what (x) values does the graph of (y) equals (f(x)) intersect the x-axis?

If I'm just generally talking about some graph, I'm not necessarily going to draw that (y) equals (f(x)). So if I'm just—so that's our y-axis, this is our x-axis—and so if I just have the graph of some function that looks something like that, let's say. That's the (y) is equal to some other function, not necessarily this (f(x)), (y) is equal to (g(x)).

The (x) values where you intercept—the points where you intersect the x-axis. Well, in order to intersect the x-axis, (y) must be equal to 0. So (y) is equal to 0 there. Notice our (y)-coordinate at either of those points are going to be equal to 0, and that means that our function is equal to zero.

So figuring out the (x) values where the graph of (y) equal (f) intersects the x-axis is equivalent to saying, for what (x) values does (f(x)) equal zero? We could just say for what (x) values does this thing right over here equal 0? Let me just write that down.

We could rewrite this as (x - 2) squared minus 9 equals 0. Well, we could add 9 to both sides. So we could get (x - 2) squared is equal to 9. Just like we saw before, that means that (x - 2) is equal to the positive or negative square root of 9.

So we could say (x - 2) is equal to positive 3, or (x - 2) is equal to negative 3. If we add 2 to both sides of this, we get (x) is equal to 5, or (x) is equal to negative 1.

You can verify that if (x) is equal to 5, (5 - 2) is 3. Squared is 9 minus 9 is 0. So the point (5, 0) is going to be on this graph.

Also, if (x) is equal to negative 1, (-1 - 2) is negative 3. Squared is positive 9 minus 9 is 0. So also the point negative 1, 0 is on this graph. So those are the points where, those are the (x) values where the function intersects the x-axis.

More Articles

View All
Using the tangent angle addition identity | Trigonometry | Precalculus | Khan Academy
In this video, we’re going to try to compute what tangent of 13 pi over 12 is without using a calculator. But I will give you a few hints. First of all, you can rewrite tangent of 13 pi over 12 as tangent of… instead of 13 pi over 12, we can express that…
Picture of Everything? -- DONG
This website lets you create a custom message that takes up the entire page. You can then share the custom URL with friends to say something loudly, bigly. But for more things you can do online now, guys, this is DONG. The Sound Walk is like Guitar Hero …
More formal treatment of multivariable chain rule
Hello everyone. So this is what I might call a more optional video. In the last couple of videos, I talked about this multivariable chain rule, and I gave some justification. It might have been considered a little bit handwavy by some. I was doing a lot o…
Mendelian inheritance and Punnett squares | High school biology | Khan Academy
[Narrator] This is a photo of Gregor Mendel, who is often known as the father of genetics. And we’ll see in a few seconds why, and he was an Abbot of a monastery in Moravia, which is in modern day Czech Republic. And many people had bred plants for agr…
This morning routine is scientifically proven to make you limitless.
What if I told you that you could transform your life and unlock almost limitless potential, and it only takes about 15 minutes a day? In this video, I’m going to talk about something I’ve been looking for almost all my life: the Holy Grail of morning rou…
War is Madness | A Stoic Warning to the World
Man, naturally the gentlest class of being, is not ashamed to revel in the blood of others, to wage war, and to entrust the waging of war to his sons, when even dumb beasts and wild beasts keep the peace with one another. The ancient Greeks and Romans wer…