yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics by taking square roots examples | High School Math | Khan Academy


3m read
·Nov 11, 2024

So pause the video and see if you can solve for x here. Figure out which x values will satisfy this equation. All right, let's work through this, and the way I'm going to do this is I'm going to isolate the (x + 3) squared on one side. The best way to do that is to add 4 to both sides.

So adding 4 to both sides, we'll get rid of this 4, this subtracting 4, this negative 4 on the left-hand side, and so we're just left with (x + 3) squared. On the right-hand side, I'm just going to have (0 + 4). So (x + 3) squared is equal to 4.

Now, I could take the square root of both sides. Another way of thinking about it is, if I have something squared equaling 4, I could say that that something needs to either be positive or negative 2. One way of thinking about it is I'm saying that (x + 3) is going to be equal to the plus or minus square root of that 4. Hopefully, this makes intuitive sense for you.

If something squared is equal to 4, that means that this something—right over here—is going to be equal to the positive square root of 4 or the negative square root of 4, or it's going to be equal to positive or negative 2. We could write that (x + 3) could be equal to positive 2, or (x + 3) could be equal to negative 2.

Notice if (x + 3) was positive 2, then (2^2) is equal to 4. If (x + 3) was negative 2, then ((-2)^2) is equal to 4. So either of these would satisfy our equation.

If (x + 3) is equal to 2, we could just subtract 3 from both sides to solve for (x), and we're left with (x) is equal to negative 1. Over here, we could subtract 3 from both sides to solve for (x); so (x) is equal to negative 2 minus 3, which is negative 5.

So those are the two possible solutions, and you can verify that. Take these (x) values, substitute them back in, and then you can see. When you substitute (x) equals negative 1, then (x + 3) is equal to 2. (2^2) is 4 minus 4 is 0.

And when (x) is equal to negative 5, (negative 5 + 3) is negative 2. Squared is positive 4 minus 4 is also equal to 0. So these are the two possible (x) values that satisfy the equation.

Now, let's do another one that's presented to us in a slightly different way. So we are told that (f(x)) is equal to (x - 2) squared minus 9. Then we're asked, at what (x) values does the graph of (y) equals (f(x)) intersect the x-axis?

If I'm just generally talking about some graph, I'm not necessarily going to draw that (y) equals (f(x)). So if I'm just—so that's our y-axis, this is our x-axis—and so if I just have the graph of some function that looks something like that, let's say. That's the (y) is equal to some other function, not necessarily this (f(x)), (y) is equal to (g(x)).

The (x) values where you intercept—the points where you intersect the x-axis. Well, in order to intersect the x-axis, (y) must be equal to 0. So (y) is equal to 0 there. Notice our (y)-coordinate at either of those points are going to be equal to 0, and that means that our function is equal to zero.

So figuring out the (x) values where the graph of (y) equal (f) intersects the x-axis is equivalent to saying, for what (x) values does (f(x)) equal zero? We could just say for what (x) values does this thing right over here equal 0? Let me just write that down.

We could rewrite this as (x - 2) squared minus 9 equals 0. Well, we could add 9 to both sides. So we could get (x - 2) squared is equal to 9. Just like we saw before, that means that (x - 2) is equal to the positive or negative square root of 9.

So we could say (x - 2) is equal to positive 3, or (x - 2) is equal to negative 3. If we add 2 to both sides of this, we get (x) is equal to 5, or (x) is equal to negative 1.

You can verify that if (x) is equal to 5, (5 - 2) is 3. Squared is 9 minus 9 is 0. So the point (5, 0) is going to be on this graph.

Also, if (x) is equal to negative 1, (-1 - 2) is negative 3. Squared is positive 9 minus 9 is 0. So also the point negative 1, 0 is on this graph. So those are the points where, those are the (x) values where the function intersects the x-axis.

More Articles

View All
How To Build The Future: Sam Altman
We said from the very beginning we were going to go after AGI at a time when in the field you weren’t allowed to say that because that just seemed impossibly crazy. I remember a rash of criticism for you guys at that moment. We really wanted to push on th…
Experiments in Art and Technology with Artforum Editor Michelle Kuo
So I’ll just start by saying experiments in art and technology was a group that was founded in 1966 by the artist Robert Rauschenberg by an engineer named Billy Kluever, who was a research scientist at Bell Labs at that time. Literally, the heyday, or bas…
Gustaf Alströmer - Growth for Startups
My name is Gustav. I’m gonna give a talk on growth for startups. This is gonna be for some of you guys, not super relevant right now because you might not have launched and thinking too much about growth when you’re having a launch isn’t that relevant. Bu…
Mars Gets Ready for Its Close-up | Podcast | Overheard at National Geographic
I’m getting to go on a guided tour of Mars. This is so freaking cool! You can see this spectacular panoramic landscape. This could be Canyonlands; this could be Death Valley. What’s the weather like in this section of Mars? Yeah, the forecast for tomorro…
3 Arguments Why Marijuana Should Stay Illegal Reviewed
All around the world, marijuana is being decriminalized, or even made legal. But is this really a good idea? In the online debate, the harmful sides are often downplayed. So let’s look at the three most powerful arguments against legalizing marijuana. Ar…
How Gen Alpha Will Change Society Forever
Gen Alpha is the first generation of humans to be born with access to mobile technology. By the age of two, many Gen Alpha toddlers can already interact with these devices in meaningful ways. Beyond watching Cocomelon on YouTube, they can navigate the app…