yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics by taking square roots examples | High School Math | Khan Academy


3m read
·Nov 11, 2024

So pause the video and see if you can solve for x here. Figure out which x values will satisfy this equation. All right, let's work through this, and the way I'm going to do this is I'm going to isolate the (x + 3) squared on one side. The best way to do that is to add 4 to both sides.

So adding 4 to both sides, we'll get rid of this 4, this subtracting 4, this negative 4 on the left-hand side, and so we're just left with (x + 3) squared. On the right-hand side, I'm just going to have (0 + 4). So (x + 3) squared is equal to 4.

Now, I could take the square root of both sides. Another way of thinking about it is, if I have something squared equaling 4, I could say that that something needs to either be positive or negative 2. One way of thinking about it is I'm saying that (x + 3) is going to be equal to the plus or minus square root of that 4. Hopefully, this makes intuitive sense for you.

If something squared is equal to 4, that means that this something—right over here—is going to be equal to the positive square root of 4 or the negative square root of 4, or it's going to be equal to positive or negative 2. We could write that (x + 3) could be equal to positive 2, or (x + 3) could be equal to negative 2.

Notice if (x + 3) was positive 2, then (2^2) is equal to 4. If (x + 3) was negative 2, then ((-2)^2) is equal to 4. So either of these would satisfy our equation.

If (x + 3) is equal to 2, we could just subtract 3 from both sides to solve for (x), and we're left with (x) is equal to negative 1. Over here, we could subtract 3 from both sides to solve for (x); so (x) is equal to negative 2 minus 3, which is negative 5.

So those are the two possible solutions, and you can verify that. Take these (x) values, substitute them back in, and then you can see. When you substitute (x) equals negative 1, then (x + 3) is equal to 2. (2^2) is 4 minus 4 is 0.

And when (x) is equal to negative 5, (negative 5 + 3) is negative 2. Squared is positive 4 minus 4 is also equal to 0. So these are the two possible (x) values that satisfy the equation.

Now, let's do another one that's presented to us in a slightly different way. So we are told that (f(x)) is equal to (x - 2) squared minus 9. Then we're asked, at what (x) values does the graph of (y) equals (f(x)) intersect the x-axis?

If I'm just generally talking about some graph, I'm not necessarily going to draw that (y) equals (f(x)). So if I'm just—so that's our y-axis, this is our x-axis—and so if I just have the graph of some function that looks something like that, let's say. That's the (y) is equal to some other function, not necessarily this (f(x)), (y) is equal to (g(x)).

The (x) values where you intercept—the points where you intersect the x-axis. Well, in order to intersect the x-axis, (y) must be equal to 0. So (y) is equal to 0 there. Notice our (y)-coordinate at either of those points are going to be equal to 0, and that means that our function is equal to zero.

So figuring out the (x) values where the graph of (y) equal (f) intersects the x-axis is equivalent to saying, for what (x) values does (f(x)) equal zero? We could just say for what (x) values does this thing right over here equal 0? Let me just write that down.

We could rewrite this as (x - 2) squared minus 9 equals 0. Well, we could add 9 to both sides. So we could get (x - 2) squared is equal to 9. Just like we saw before, that means that (x - 2) is equal to the positive or negative square root of 9.

So we could say (x - 2) is equal to positive 3, or (x - 2) is equal to negative 3. If we add 2 to both sides of this, we get (x) is equal to 5, or (x) is equal to negative 1.

You can verify that if (x) is equal to 5, (5 - 2) is 3. Squared is 9 minus 9 is 0. So the point (5, 0) is going to be on this graph.

Also, if (x) is equal to negative 1, (-1 - 2) is negative 3. Squared is positive 9 minus 9 is 0. So also the point negative 1, 0 is on this graph. So those are the points where, those are the (x) values where the function intersects the x-axis.

More Articles

View All
Zeroes and Ones: Into the Depths of Computation | Jim Keller | EP 272
I knew this wasn’t going to work, so you’re in a space. The direction I’m going is not going to work. Do you know how mosquitoes work? Mosquitoes are fun! So they detect two things: they detect water vapor and carbon dioxide. Mosquitoes will fly along in …
Bringing Life-Changing Treatments to the Blind in India | National Geographic
The world is invisible to the blind people, but at the same time, the blind people withdraw themselves from the surrounding, and they make them invisible. Unless the people who are cited actively try to find them out, they will remain in the dark. [Music…
How to Analyze a Cash Flow Statement Like a Hedge Fund Analyst
There’s an old saying: cash is king. However, when it comes to investing, cash flow is king. In this video, we are going to go over how to analyze a company’s cash flow statement. I’m going to draw upon my experience as an investment analyst at a large in…
Why Are Religious People Healthier and Happier? | Rabbi Darren Levine | Big Think
Ideas of the science of religion are complicated. God is difficult to bring into the laboratory, and it is very hard to quantify the sacred, but science is beginning to ask questions about the results or the consequences of participating in religious life…
Why Isn't the Stock Market Crashing?
Hey guys, welcome back to the channel! In this video, we’re going to be talking about, we’re going to be trying to answer the question: why isn’t the stock market crashing now? For this video, we are going to look over in America. We’re going to be focusi…
A Conversation with Aileen Lee - Moderated by Geoff Ralston
Today I am honored to have my good friend Aileen Lee here, and we’re going to have a conversation about stuff. Yeah, well, I hope we talk about like aliens. Aileen is a very public personality in the venture world, so there’s lots of great talks she has g…