yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics by taking square roots examples | High School Math | Khan Academy


3m read
·Nov 11, 2024

So pause the video and see if you can solve for x here. Figure out which x values will satisfy this equation. All right, let's work through this, and the way I'm going to do this is I'm going to isolate the (x + 3) squared on one side. The best way to do that is to add 4 to both sides.

So adding 4 to both sides, we'll get rid of this 4, this subtracting 4, this negative 4 on the left-hand side, and so we're just left with (x + 3) squared. On the right-hand side, I'm just going to have (0 + 4). So (x + 3) squared is equal to 4.

Now, I could take the square root of both sides. Another way of thinking about it is, if I have something squared equaling 4, I could say that that something needs to either be positive or negative 2. One way of thinking about it is I'm saying that (x + 3) is going to be equal to the plus or minus square root of that 4. Hopefully, this makes intuitive sense for you.

If something squared is equal to 4, that means that this something—right over here—is going to be equal to the positive square root of 4 or the negative square root of 4, or it's going to be equal to positive or negative 2. We could write that (x + 3) could be equal to positive 2, or (x + 3) could be equal to negative 2.

Notice if (x + 3) was positive 2, then (2^2) is equal to 4. If (x + 3) was negative 2, then ((-2)^2) is equal to 4. So either of these would satisfy our equation.

If (x + 3) is equal to 2, we could just subtract 3 from both sides to solve for (x), and we're left with (x) is equal to negative 1. Over here, we could subtract 3 from both sides to solve for (x); so (x) is equal to negative 2 minus 3, which is negative 5.

So those are the two possible solutions, and you can verify that. Take these (x) values, substitute them back in, and then you can see. When you substitute (x) equals negative 1, then (x + 3) is equal to 2. (2^2) is 4 minus 4 is 0.

And when (x) is equal to negative 5, (negative 5 + 3) is negative 2. Squared is positive 4 minus 4 is also equal to 0. So these are the two possible (x) values that satisfy the equation.

Now, let's do another one that's presented to us in a slightly different way. So we are told that (f(x)) is equal to (x - 2) squared minus 9. Then we're asked, at what (x) values does the graph of (y) equals (f(x)) intersect the x-axis?

If I'm just generally talking about some graph, I'm not necessarily going to draw that (y) equals (f(x)). So if I'm just—so that's our y-axis, this is our x-axis—and so if I just have the graph of some function that looks something like that, let's say. That's the (y) is equal to some other function, not necessarily this (f(x)), (y) is equal to (g(x)).

The (x) values where you intercept—the points where you intersect the x-axis. Well, in order to intersect the x-axis, (y) must be equal to 0. So (y) is equal to 0 there. Notice our (y)-coordinate at either of those points are going to be equal to 0, and that means that our function is equal to zero.

So figuring out the (x) values where the graph of (y) equal (f) intersects the x-axis is equivalent to saying, for what (x) values does (f(x)) equal zero? We could just say for what (x) values does this thing right over here equal 0? Let me just write that down.

We could rewrite this as (x - 2) squared minus 9 equals 0. Well, we could add 9 to both sides. So we could get (x - 2) squared is equal to 9. Just like we saw before, that means that (x - 2) is equal to the positive or negative square root of 9.

So we could say (x - 2) is equal to positive 3, or (x - 2) is equal to negative 3. If we add 2 to both sides of this, we get (x) is equal to 5, or (x) is equal to negative 1.

You can verify that if (x) is equal to 5, (5 - 2) is 3. Squared is 9 minus 9 is 0. So the point (5, 0) is going to be on this graph.

Also, if (x) is equal to negative 1, (-1 - 2) is negative 3. Squared is positive 9 minus 9 is 0. So also the point negative 1, 0 is on this graph. So those are the points where, those are the (x) values where the function intersects the x-axis.

More Articles

View All
Force, mass and acceleration | Movement and forces | Middle school physics | Khan Academy
So, I have three different asteroids over here, and they have different masses. We’ll talk a lot more about what mass means, but one way to think about it is how much stuff there is there. There are other ways to think about it. Let’s say that this first…
Why Are Things Creepy?
Hey, Vsauce. Michael here. Fear gives us life. Being afraid of the right things kept our ancestors alive. It makes sense to be afraid of poisonous insects or hungry tigers, but what about fear when there is no clear and obvious danger? For instance, a Ted…
Do You Have a Simian Line?
Does your hand look like my wife’s hand? Do your fingers fold down along two major lines, a distal and proximal crease? Most human hands do, but for about 15 percent of the population, it’s not that simple. For example, on my left hand, my distal crease …
Go Inside an Antarctic 'City' of 400,000 King Penguins — Ep. 4 | Wildlife: Resurrection Island
In one of the world’s largest King penguin colonies, chicks must be able to make it through the winter without food. This chick can expect one of three fates: be eaten alive, starve to death, or hang on one more day until their parents return with food to…
Magic Tricks with Larry Wilmore | StarTalk
Anytime I interview somebody, no matter who they are, I want to know if they have some hidden geek credentials. Almost everybody does; they just don’t admit to it in any other interview because they don’t get any street cred for doing so. But on Star Talk…
Nested conditionals | Intro to CS - Python | Khan Academy
What happens if you indent a conditional inside another conditional? To trace how the computer executes a program with nested conditionals, we need to look at the indentation. We know that an if starts a new conditional, so that means we have two conditio…