yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Taking and visualizing powers of a complex number | Precalculus | Khan Academy


4m read
·Nov 10, 2024

We're told to consider the complex number ( z ) is equal to negative one plus ( i ) times the square root of three. Find ( z ) to the fourth in polar and rectangular form. So pause this video and see if you can figure that out.

All right, now let's work through this together. So first, let's just think about what the modulus of ( z ) is. We know that the modulus is going to be equal to the square root of the real part squared plus the imaginary part squared. So it is going to be ( (-1)^2 + (\sqrt{3})^2 ), which is going to be equal to ( 1 + 3 ), so the principal root of 4, which is equal to 2.

Now, the next interesting question is what is the argument of ( z ). The reason why I'm even going through this is once we put it into polar form, it's going to be a lot easier to both visualize what it means to take the various exponents of it and then we can convert back into rectangular form.

So let me draw another complex plane here: imaginary axis, that is my real axis. If I were to plot ( z ), it would look something like this. We have negative 1 in the real direction, so that might be negative 1 there, and we have ( \sqrt{3} ) in the imaginary direction. So our point ( z ) is right over here.

We know the distance from the origin, the modulus, and we know that this distance right over here is 2. We know that this distance right over here is ( \sqrt{3} ) and we know that this distance right over here is 1. You might immediately recognize this as a 30-60-90 triangle because, in a 30-60-90 triangle, the short side is half of the hypotenuse, and the long side is the square root of 3 times the short side.

So we know that this is a 60 degree angle. We know that this is a 30 degree angle. The reason why that helps us, it's hard to see that 30 degree. The reason why that helps us is that this is 60 degrees. We know that the argument here must be 120 degrees. So the ( \text{arg} ) of ( z ), the argument of ( z ), is 120 degrees.

Just like that, we can now think about ( z ) in polar form. So let me write it right over here: we can write that ( z ) is equal to its modulus 2 times the cosine of 120 degrees plus ( i ) times the sine of 120 degrees. We could also visualize ( z ) now over here. So its modulus is 2, so that's halfway to 4, and its argument is 120 degrees, so it would put us right over here. This is where ( z ) is.

Now what would ( z^2 ) be? Well, when you multiply complex numbers and you've represented them in polar form, we know that you would multiply the moduli. So it would then be ( 2^2 ), so it'd be 4 right over here, and then you would add the arguments. So you would essentially rotate ( z ) by another 120 degrees because you're multiplying it by ( z ). So it's going to be cosine of 240 degrees plus ( i ) sine of 240 degrees. Once again, ( 2 \times 2 ) is equal to 4, and ( 120 ) degrees plus another ( 120 ) degrees is ( 240 ) degrees.

Now, where would ( z^2 ) sit? Well, its argument is ( 240 ) degrees and its modulus is 4, so now it is twice as far from the origin. Let's think about what... I'll do this in a new color. What ( z ) to the third power is going to be equal to? Well, that's going to be ( z^2 ) times ( z ) again. So we're going to multiply 2 times this modulus, so that's going to be equal to 8, and then we're going to rotate ( z^2 ) by 120 degrees: cosine of 360 degrees plus ( i ) sine of 360 degrees.

So that's going to put us at 8 for our modulus, and ( 360 ) degrees is the same thing as ( 0 ) degrees, so we are right over here. So this is ( z ) to the third power, and I think you know where this is going. What is ( z ) to the fourth power going to be? Let me move my screen down a little bit so I have a little more real estate.

( z^4 ), well I'm just going to take this modulus here since I'm going to multiply ( z^3 ) times ( z ). I'm going to multiply that modulus times 2 to get to 16, and then I'm going to add another 120 degrees. Well, I could write ( \cos(480) ) degrees or ( 360 ) degrees, the same thing as ( 0 ) degrees.

So this I could say is ( 0 ) degrees. This is ( 0 ) degrees, so if I add ( 120 ) to that, I get ( \cos(120) ) degrees plus ( i \sin(120) ) degrees. So my argument is back to being at ( 120 ) degrees but now my modulus is 16. So there's 4, 8, 12, 16. This outer circle right over here, I am right over there with ( z ) to the fourth.

We're almost done. We've just represented ( z ) to the fourth in polar form. Now we just have to think about it in rectangular form. Now, lucky for us, we already know what ( \cos(120) ) degrees is and ( \sin(120) ) degrees is. We can construct, if we want, another 30-60-90 triangle right over here.

So the hypotenuse here has length 16, the short side is going to be half of that, so it has length 8, and then the long side is going to be ( \sqrt{3} ) times the short side, so it's going to be ( 8\sqrt{3} ). If we wanted to write ( z ) to the fourth in a rectangular form, it would be the real part: ( -8 + i \times 8\sqrt{3} ).

And we're done.

More Articles

View All
Charlie Munger's SCARY Inflation Warning (2022)
What makes life interesting is we don’t know how it’s going to work out. I think we do know we’re flirting with serious trouble. Inflation is at such high levels right now that those of us under the age of 40 have never even lived through a period of such…
Predicting bond type (metals vs. nonmetals) | AP Chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of bonds between atoms, and we talked about the types of bonds: ionic, covalent, and metallic. In this video, we’re going to dig a little bit deeper and talk about the types of bonds that are likely…
Venus 101 | National Geographic
(Ethereal music) - [Angeli Gabriel] Named after the ancient Roman goddess of beauty, Venus is known for its exceptional brightness in the night sky. But behind this facade is a world of storms and infernos unlike anywhere else in the solar system. Venus,…
The Holocaust | World History | Khan Academy
In this video, we’re going to talk about what is one of the darkest chapters in human history: the Holocaust, which involved the massacre of roughly 6 million Jews and as many as 11 million civilians in total. In order to understand the Holocaust, we’re g…
The Seven Years' War part 1
When we’re talking about major wars in colonial North America, we tend to think about the American Revolution, not its earlier iteration, the Seven Years War. I think that’s a shame because the Seven Years War was incredibly influential, not only on the A…
Writing algebraic subtraction expressions | 6th grade | Khan Academy
We have different statements here that can each be expressed as an algebraic expression. As you might have guessed, I would love you to pause this video and try to write each of these statements as an algebraic expression before we do it together. All ri…