yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Derivative of __ | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

What we have right over here is the graph of ( y ) is equal to ( e^x ). What we're going to know by the end of this video is one of the most fascinating ideas in calculus, and once again, it reinforces the idea that ( e ) is really this somewhat magical number.

So, we're going to do a little bit of an exploration. Let's just pick some points on this curve of ( y ) is equal to ( e^x ) and think about what the slope of the tangent line is, or what the derivative looks like.

Let's say when ( y ) is equal to 1, or when ( e^x ) is equal to 1. This is the case when ( x ) is equal to zero. Well, the slope of the tangent line looks like it is 1, which is curious because that's exactly the value of the function at that point.

What about when ( e^x ) is equal to 2, right over here? Well, here let me do that another color. The slope of the tangent line sure looks pretty close—sure looks pretty close to 2.

What about when ( e^x ) is equal to 5? Well, the slope of the tangent line here sure does look pretty close—sure does look pretty close to 5.

So, just eyeballing it, is it the case that the slope of the tangent line of ( e^x ) is the same thing as ( e^x )? I will tell you, and this is an amazing thing, that that is indeed true. If I have some function ( f(x) ) that is equal to ( e^x ), and if I were to take the derivative of this, this is going to be equal to ( e^x ) as well.

Another way of saying it, the derivative with respect to ( x ) of ( e^x ) is equal to ( e^x ). That is an amazing thing. In previous lessons or courses, you've learned about ways to define ( e ), and this could be a new one.

( e ) is the number that, where if you take that number to the power ( x )—if you define a function or expression as ( e^x )—it's that number where if you take the derivative of that, it's still going to be ( e^x ).

What you're looking at here is a curve where the value, the ( y ) value at any point, is the same as the slope of the tangent line. If that doesn't strike you as mysterious and magical and amazing just yet, it will. Maybe tonight you'll wake up in the middle of the night and you'll realize just what's going on.

Now, some of you might be saying, "Okay, this is cool, you're telling me this, but how do I know it's true?" In another video, we will do the proof.

More Articles

View All
Where in the World is Jessica Nabongo? | Podcast | Overheard at National Geographic
[Music] No one knows exactly when humans started traveling, venturing beyond the little corner of the world they knew to discover new places. In some ways, it feels like it’s always been part of who we are as a species. Before babies can even walk or talk…
Warren Buffett: "A Storm is Brewing" in the Real Estate Market
But it all has consequences, and I think we’re—well, we are starting to see the consequences of billionaire investor Warren Buffett’s warning about a major storm that is about to strike the US real estate market. This $1.4 trillion debt-fueled tsunami has…
Scale factors and area
We’re told that polygon Q is a scaled copy of polygon P using a scale factor of one half. Polygon Q’s area is what fraction of polygon P’s area? Pause this video and see if you can figure that out. All right, my brain wants to make this a little bit tang…
Solving proportions 2 exercise examples | Algebra Basics | Khan Academy
[Instructor] We have the proportion ( x - 9 ) over ( 12 ) is equal to ( \frac{2}{3} ), and we wanna solve for the ( x ) that satisfies this proportion. Now, there’s a bunch of ways that you could do it. A lot of people, as soon as they see a proportion li…
Molecules Bumping Into One Another | Genius
Should I brew more? Still warm, and it’s been awhile. But the Law of Cooling is a decaying exponential. But you need a measurement on the liquid to get the heat transfer coefficient. Don’t worry about the measurement for now. We’ll find a new way to thin…
There Is No End of Science
That’s an excellent example of what’s called a crucial test, which is sort of the pinnacle of what science is all about. If we do a test and it doesn’t agree with a particular theory that we have, that’s problematic. But that doesn’t mean that it refutes …