yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding derivative with fundamental theorem of calculus | AP®︎ Calculus AB | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the function g of x, and it is equal to the definite integral from 19 to x of the cube root of t dt. What I'm curious about finding, or trying to figure out, is what is g prime of 27? What is that equal to? Pause this video and try to think about it, and I'll give you a little bit of a hint. Think about the second fundamental theorem of calculus.

All right, now let's work on this together. So we want to figure out what g prime is. We could try to figure out what g prime of x is and then evaluate that at 27. The best way that I can think about doing that is by taking the derivative of both sides of this equation.

So, let's take the derivative of both sides of that equation. The left-hand side, we'll take the derivative with respect to x of g of x, and the right-hand side, the derivative with respect to x of all of this business. Now, the left-hand side is pretty straightforward. The derivative with respect to x of g of x, that's just going to be g prime of x.

But what is the right-hand side going to be equal to? Well, that's where the second fundamental theorem of calculus is useful. I'll write it right over here: second fundamental theorem of calculus. It tells us, let's say we have some function capital F of x, and it's equal to the definite integral from a, some constant a, to x, of lowercase f of t dt.

The second fundamental theorem of calculus tells us that if our lowercase f is continuous on the interval from a to x, so I'll write it this way on the closed interval from a to x, then the derivative of our capital F of x, so capital F prime of x, is just going to be equal to our inner function f, evaluated at x instead of t. It's going to become lowercase f of x.

Now, I know when you first saw this, you thought that, hey, this might be some cryptic thing that you might not use too often. But we're going to see that it's actually very, very useful. And even in the future, some of you might already know there's multiple ways to try to think about a definite integral like this, and you'll learn it in the future.

But this can be extremely simplifying, especially if you have a hairy definite integral like this. And so this just tells us, hey, look, the derivative with respect to x of all of this business. First, we have to check that our inner function, which would be analogous to our lowercase f here, is continuous on the interval from 19 to x.

Well, no matter what x is, this is going to be continuous over that interval because this is continuous for all x's. And so we meet this first condition, our major condition. And so then we could just say, all right, then the derivative of all of this is just going to be this inner function, replacing t with x. So we're going to get the cube root. Instead of the cube root of t, you're going to get the cube root of x.

And so we can go back to our original question: what is g prime of 27 going to be equal to? What's going to be equal to the cube root of 27, which is of course equal to 3, and we're done.

More Articles

View All
Behind the Scenes of Marvel Studios' Moon Knight | National Geographic
I’d love to take this opportunity to show you around with Moon Knight. We’re in a very different world. The world building is so complete and interesting, and it’s hard to paint such a big canvas. While you watch the show, you will learn about ancient Eg…
Why Rich People Are Cheap
It’s a cotton stereotype self-perpetuated throughout history: rich people are cheap. We’ve seen this demonstrated and exaggerated in everything from fictional characters like Mr. Burns from The Simpsons and Ebenezer Scrooge from A Christmas Carol, all the…
2015 AP Calculus BC 2a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
At time ( T ) is greater than or equal to zero, a particle moving along a curve in the XY plane has position ( X(T) ) and ( Y(T) ). So, its x-coordinate is given by the parametric function ( X(T) ) and y-coordinate by the parametric function ( Y(T) ). Wi…
Underwater Explosions (Science with Alan Sailer!) - Smarter Every Day 63
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So today, I’m in California, and I have the great privilege of introducing the man, Alan Sailer. Hello, Alan! Sailer is, if you don’t know, one of the best high-speed photographers that currently do…
Geometric series as a function | Infinite sequences and series | AP Calculus BC | Khan Academy
So we have this function that’s equal to two minus eight x squared plus 32 x to the fourth minus 128 x to the sixth, and just keeps going and going. So it’s defined as an infinite series, and what I want to explore in this video is: is there another way t…
Answering Google's Most Asked Questions of 2022
For most of Google’s relatively short existence, we’ve searched small, silly, insignificant questions - things like how to tell if a papaya is ripe. The color is almost fully yellow, and the feeling is slightly soft. Don’t forget to scoop out the seeds! S…