yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding derivative with fundamental theorem of calculus | AP®︎ Calculus AB | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the function g of x, and it is equal to the definite integral from 19 to x of the cube root of t dt. What I'm curious about finding, or trying to figure out, is what is g prime of 27? What is that equal to? Pause this video and try to think about it, and I'll give you a little bit of a hint. Think about the second fundamental theorem of calculus.

All right, now let's work on this together. So we want to figure out what g prime is. We could try to figure out what g prime of x is and then evaluate that at 27. The best way that I can think about doing that is by taking the derivative of both sides of this equation.

So, let's take the derivative of both sides of that equation. The left-hand side, we'll take the derivative with respect to x of g of x, and the right-hand side, the derivative with respect to x of all of this business. Now, the left-hand side is pretty straightforward. The derivative with respect to x of g of x, that's just going to be g prime of x.

But what is the right-hand side going to be equal to? Well, that's where the second fundamental theorem of calculus is useful. I'll write it right over here: second fundamental theorem of calculus. It tells us, let's say we have some function capital F of x, and it's equal to the definite integral from a, some constant a, to x, of lowercase f of t dt.

The second fundamental theorem of calculus tells us that if our lowercase f is continuous on the interval from a to x, so I'll write it this way on the closed interval from a to x, then the derivative of our capital F of x, so capital F prime of x, is just going to be equal to our inner function f, evaluated at x instead of t. It's going to become lowercase f of x.

Now, I know when you first saw this, you thought that, hey, this might be some cryptic thing that you might not use too often. But we're going to see that it's actually very, very useful. And even in the future, some of you might already know there's multiple ways to try to think about a definite integral like this, and you'll learn it in the future.

But this can be extremely simplifying, especially if you have a hairy definite integral like this. And so this just tells us, hey, look, the derivative with respect to x of all of this business. First, we have to check that our inner function, which would be analogous to our lowercase f here, is continuous on the interval from 19 to x.

Well, no matter what x is, this is going to be continuous over that interval because this is continuous for all x's. And so we meet this first condition, our major condition. And so then we could just say, all right, then the derivative of all of this is just going to be this inner function, replacing t with x. So we're going to get the cube root. Instead of the cube root of t, you're going to get the cube root of x.

And so we can go back to our original question: what is g prime of 27 going to be equal to? What's going to be equal to the cube root of 27, which is of course equal to 3, and we're done.

More Articles

View All
The 5 BEST Credit Cards For Millennials
What’s up you guys? It’s Graham here. So today we’re gonna be combining my two favorite topics in the entire planet. That would be Millennials and credit cards. Some might say that’s a little like combining oil and water, or for people who can’t properly …
Worked example: Parametric arc length | AP Calculus BC | Khan Academy
Let’s say that X is a function of the parameter T, and it’s equal to cosine of T, and Y is also defined as a function of T, and it’s equal to sine of T. We want to find the arc length of the curve traced out, so the length of the curve from T equals 0 to …
Bitcoin To $1,000,000 | Meet Kevin Pt 2
Gary Gensler, a few weeks ago, compared regulation in the cryptocurrency market to regulation in cars. When we finally had cars get regulated, we had stop signs, we had crosswalks, and traffic lights. Car adoption skyrocketed. Do you think the same thing …
THE MAKING OF MY NEW SHOW | BTS for MONEY COURT
This project’s been a year and a half in the making. It’s how long it’s taken. This is one of the most technologically advanced studios in the world. It’s massive; it’s the size of a city block. You know, we’re not saving the world if we met animals in th…
Direction of reversible reactions | Equilibrium | AP Chemistry | Khan Academy
As an example of a reversible reaction, let’s look at the hypothetical reaction where diatomic gas X₂ turns into its individual atoms, X. It would turn into two of them, so X₂ goes to 2X. The forward reaction is X₂ turning into 2X, and the reverse reactio…
Solving equations and inequalities through substitution example 3
Joey is training for a hot dog eating contest. The person who eats the most hot dogs in 10 minutes is the winner. If r is the number of hot dogs that Joey can eat in a minute and n is the total number of hot dogs he eats in the contest, we can write the f…