yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a quadratic function from solutions | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told a quadratic function ( f ) has two real solutions ( x = -3 ) and ( x = 5 ) that make ( f(x) = 0 ). Select the equations that could define ( f ) in standard form. So, pause this video and have a go at that before we do this together.

All right, so there's a bunch of ways you could approach this, but the way that I think about it is we can express this quadratic in terms of its two solutions. So, you could have ( x - ) the first solution, and the first solution here is when ( x ) is equal to -3, and then times ( x ) us the second solution when ( x ) is equal to 5.

Now, why does this work? Well, think about it. If ( x ) is equal to -3 right here, and if I were to subtract another -3, well then this is going to be equal to 0. ( 0 \times ) anything is zero, and then ( f(-3) ) would be zero. Similarly, if ( x ) were equal to five here, well then this whole thing would be equal to zero; ( 0 \times ) anything is 0, so ( f(5) ) is zero.

Now, this is a definition of the quadratic, but it is not in standard form. Standard form, as a reminder, would be some constant times ( x^2 ) plus some other constant times ( x ) plus some other constant. So, to get there, we have to multiply this out.

And actually, before we do that, let me just simplify a little bit. This is going to be equal to ( x ) when I subtract a -3. That's the same thing as adding three, and then times ( x - 5 ). So, ( x + 3 \times x - 5 ).

And now we can expand this out so we get it to standard form. So, this is going to be equal to ( x \times x ), which is ( x^2 ). We have ( x \times -5 ), which is -5x. We have 3 times ( x ), which is 3x, and then we have 3 times -5, which is -15.

So, last but not least, we have ( x^2 ), and if I am subtracting 5x and then I add 3x, that is -2x minus 15. So, this is ( f(x) ) in standard form.

Now, let's see which of these choices gets me this. So when I look over here, well, what's interesting is all of these have a coefficient of either 2 or -2. I don't see that over here. So what is happening here is I can multiply this whole thing by 2 or -2, and it's not going to change where my zeros are.

Why is that? Well, think about it. If I had a 2 over here, when ( x ) is equal to 5, this is going to be ( 0 \times ) something (\times 2); it's still going to be equal to zero. Similarly, if that were a negative -2, so I'm going to have the same zeros if I multiply it by really any number that is not zero.

So let's do that. If I were to multiply this equation by positive 2, I need to multiply all of them by two. I'm running out of space, so I'll do it up here. We would get ( f(x) ) is equal to ( 2 \times x^2 ), which is ( 2x^2 ); ( 2 \times -2x ) is -4x; ( 2 \times -15 ) is -30. That's one way we could think about it.

Another way we could say maybe ( f(x) ) is going to be equal to, and to be clear, these are not the same functions. When I multiply it by 2 or -2, it does fundamentally change the function, but they would have the same zeros; they would have the same two real solutions ( x = -3 ) and ( x = 5 ).

So if I were to say, “Well, maybe instead of this, ( f(x) ) could be this times -2,” once again, it's a different ( f(x) ); it's a different function. In these situations, I'm just trying to find out all the possibilities, and there could be many more. I could multiply it by 3 or -3 or anything else.

But if I were to multiply this by -2, I would get ( -2x^2 ); ( -2 \times -2x ) is ( +4x ); ( -2 \times -15 ) is ( +30 ). So I’m going to say it one more time, the three things that I’m boxing off here, these three possible functions, these are all different functions. If I were to graph it, they would all look different, but they all have the same two real solutions ( x = -3 ) and ( x = 5 ).

So now, let's see which choices match up: ( 2x^2 - 4x - 30 ), ( 2x^2 - 4x - 30 ). I like this one right here and then ( -2x^2 + 4x + 30 ), ( -2x^2 + 4x + 30 ). I like this one here as well, so I'm done.

More Articles

View All
Adding rational expression: unlike denominators | High School Math | Khan Academy
Pause the video and try to add these two rational expressions. Okay, I’m assuming you’ve had a go at it. Now we can work through this together. So, the first thing that you might have hit when you tried to do it is you realize that they have different de…
2015 AP Biology free response 2 c d
Part C: A researcher estimates that in a certain organism, the complete metabolism of glucose produces 30 molecules of ATP for each molecule of glucose. The energy released from the total oxidation of glucose under standard conditions is 686 kilocalories …
To everyone that says “Spend your money NOW! You might not be alive tomorrow!”
You don’t need money and things to be fulfilled because once you escape that mindset, you realize that there is no price to happiness because it was free all along. What’s up, you guys? It’s Graham here. So, gonna go a little bit more personal and maybe …
8 Daily Habits That Changed My Life
What’s up, you guys? It’s Graham here. So, the new year is fast approaching. It’s almost going to be 2020, and for some reason, I still think that five years ago was 2010. But anyway, as we get closer to the new year, people begin creating their New Year…
15 Things To Do If You Get Rich All Of A Sudden
Although it is incredibly rare, sometimes it happens that people get a massive influx of capital. The most common way is by inheriting a fortune from a deceased relative. The others are often different forms of gambling, like winning the lottery or someth…
Welcome to Financial Literacy! | Financial Literacy | Khan Academy
Hi everyone! Sal Cotton here from Khan Academy, and I just wanted to introduce you and welcome you to our financial literacy course. Why financial literacy? Well, money is everywhere, and if you don’t understand money, it can easily take control of your …