yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a quadratic function from solutions | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told a quadratic function ( f ) has two real solutions ( x = -3 ) and ( x = 5 ) that make ( f(x) = 0 ). Select the equations that could define ( f ) in standard form. So, pause this video and have a go at that before we do this together.

All right, so there's a bunch of ways you could approach this, but the way that I think about it is we can express this quadratic in terms of its two solutions. So, you could have ( x - ) the first solution, and the first solution here is when ( x ) is equal to -3, and then times ( x ) us the second solution when ( x ) is equal to 5.

Now, why does this work? Well, think about it. If ( x ) is equal to -3 right here, and if I were to subtract another -3, well then this is going to be equal to 0. ( 0 \times ) anything is zero, and then ( f(-3) ) would be zero. Similarly, if ( x ) were equal to five here, well then this whole thing would be equal to zero; ( 0 \times ) anything is 0, so ( f(5) ) is zero.

Now, this is a definition of the quadratic, but it is not in standard form. Standard form, as a reminder, would be some constant times ( x^2 ) plus some other constant times ( x ) plus some other constant. So, to get there, we have to multiply this out.

And actually, before we do that, let me just simplify a little bit. This is going to be equal to ( x ) when I subtract a -3. That's the same thing as adding three, and then times ( x - 5 ). So, ( x + 3 \times x - 5 ).

And now we can expand this out so we get it to standard form. So, this is going to be equal to ( x \times x ), which is ( x^2 ). We have ( x \times -5 ), which is -5x. We have 3 times ( x ), which is 3x, and then we have 3 times -5, which is -15.

So, last but not least, we have ( x^2 ), and if I am subtracting 5x and then I add 3x, that is -2x minus 15. So, this is ( f(x) ) in standard form.

Now, let's see which of these choices gets me this. So when I look over here, well, what's interesting is all of these have a coefficient of either 2 or -2. I don't see that over here. So what is happening here is I can multiply this whole thing by 2 or -2, and it's not going to change where my zeros are.

Why is that? Well, think about it. If I had a 2 over here, when ( x ) is equal to 5, this is going to be ( 0 \times ) something (\times 2); it's still going to be equal to zero. Similarly, if that were a negative -2, so I'm going to have the same zeros if I multiply it by really any number that is not zero.

So let's do that. If I were to multiply this equation by positive 2, I need to multiply all of them by two. I'm running out of space, so I'll do it up here. We would get ( f(x) ) is equal to ( 2 \times x^2 ), which is ( 2x^2 ); ( 2 \times -2x ) is -4x; ( 2 \times -15 ) is -30. That's one way we could think about it.

Another way we could say maybe ( f(x) ) is going to be equal to, and to be clear, these are not the same functions. When I multiply it by 2 or -2, it does fundamentally change the function, but they would have the same zeros; they would have the same two real solutions ( x = -3 ) and ( x = 5 ).

So if I were to say, “Well, maybe instead of this, ( f(x) ) could be this times -2,” once again, it's a different ( f(x) ); it's a different function. In these situations, I'm just trying to find out all the possibilities, and there could be many more. I could multiply it by 3 or -3 or anything else.

But if I were to multiply this by -2, I would get ( -2x^2 ); ( -2 \times -2x ) is ( +4x ); ( -2 \times -15 ) is ( +30 ). So I’m going to say it one more time, the three things that I’m boxing off here, these three possible functions, these are all different functions. If I were to graph it, they would all look different, but they all have the same two real solutions ( x = -3 ) and ( x = 5 ).

So now, let's see which choices match up: ( 2x^2 - 4x - 30 ), ( 2x^2 - 4x - 30 ). I like this one right here and then ( -2x^2 + 4x + 30 ), ( -2x^2 + 4x + 30 ). I like this one here as well, so I'm done.

More Articles

View All
I'm starting over
Hey, how’s it going? How’s life been for you recently? I just went on vacation with my family to Salita, Mexico, and it was very fun. You got to see all the street vendors, you got to see all the Mexican people, and all the white people on vacation. It wa…
Lithium Stocks to Soar? Insider Trading Worries? Investing Taxes? - Stock Market Q&A
Hey guys, welcome back to the channel! So in today’s video, we are quite simply doing a Q&A. I sent the message out on my YouTube community tab recently, and you guys left a lot of comments. So unfortunately, I’m definitely not going to be getting thr…
2015 AP Calculus AB 5d | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part D given that F of one is equal to three, write an expression for f f of x that involves an integral. Since it involves an integral, we can assume it’s going to involve F prime somehow, especially since they’ve given us so much information about F pri…
Non-inverting op-amp circuit
Okay, now we’re going to work on our first op-amp circuit. Here’s what the circuit’s going to look like. Watch where it puts the plus sign; it is on the top on this one. We’re going to have a voltage source over here; this will be plus or minus Vn. That’s…
Calculating residual example | Exploring bivariate numerical data | AP Statistics | Khan Academy
VI rents bicycles to tourists. She recorded the height in centimeters of each customer and the frame size in centimeters of the bicycle that customer rented. After plotting her results, she noticed that the relationship between the two variables was fairl…
10 Mental Mistakes That Keep You From Getting Rich
When it comes to getting rich, who do you think is your greatest enemy? We’ll answer that question for you: it is yourself, and you might not even be aware of it. That’s because our own psychology will work against us unless we make an effort to understan…