yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a quadratic function from solutions | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told a quadratic function ( f ) has two real solutions ( x = -3 ) and ( x = 5 ) that make ( f(x) = 0 ). Select the equations that could define ( f ) in standard form. So, pause this video and have a go at that before we do this together.

All right, so there's a bunch of ways you could approach this, but the way that I think about it is we can express this quadratic in terms of its two solutions. So, you could have ( x - ) the first solution, and the first solution here is when ( x ) is equal to -3, and then times ( x ) us the second solution when ( x ) is equal to 5.

Now, why does this work? Well, think about it. If ( x ) is equal to -3 right here, and if I were to subtract another -3, well then this is going to be equal to 0. ( 0 \times ) anything is zero, and then ( f(-3) ) would be zero. Similarly, if ( x ) were equal to five here, well then this whole thing would be equal to zero; ( 0 \times ) anything is 0, so ( f(5) ) is zero.

Now, this is a definition of the quadratic, but it is not in standard form. Standard form, as a reminder, would be some constant times ( x^2 ) plus some other constant times ( x ) plus some other constant. So, to get there, we have to multiply this out.

And actually, before we do that, let me just simplify a little bit. This is going to be equal to ( x ) when I subtract a -3. That's the same thing as adding three, and then times ( x - 5 ). So, ( x + 3 \times x - 5 ).

And now we can expand this out so we get it to standard form. So, this is going to be equal to ( x \times x ), which is ( x^2 ). We have ( x \times -5 ), which is -5x. We have 3 times ( x ), which is 3x, and then we have 3 times -5, which is -15.

So, last but not least, we have ( x^2 ), and if I am subtracting 5x and then I add 3x, that is -2x minus 15. So, this is ( f(x) ) in standard form.

Now, let's see which of these choices gets me this. So when I look over here, well, what's interesting is all of these have a coefficient of either 2 or -2. I don't see that over here. So what is happening here is I can multiply this whole thing by 2 or -2, and it's not going to change where my zeros are.

Why is that? Well, think about it. If I had a 2 over here, when ( x ) is equal to 5, this is going to be ( 0 \times ) something (\times 2); it's still going to be equal to zero. Similarly, if that were a negative -2, so I'm going to have the same zeros if I multiply it by really any number that is not zero.

So let's do that. If I were to multiply this equation by positive 2, I need to multiply all of them by two. I'm running out of space, so I'll do it up here. We would get ( f(x) ) is equal to ( 2 \times x^2 ), which is ( 2x^2 ); ( 2 \times -2x ) is -4x; ( 2 \times -15 ) is -30. That's one way we could think about it.

Another way we could say maybe ( f(x) ) is going to be equal to, and to be clear, these are not the same functions. When I multiply it by 2 or -2, it does fundamentally change the function, but they would have the same zeros; they would have the same two real solutions ( x = -3 ) and ( x = 5 ).

So if I were to say, “Well, maybe instead of this, ( f(x) ) could be this times -2,” once again, it's a different ( f(x) ); it's a different function. In these situations, I'm just trying to find out all the possibilities, and there could be many more. I could multiply it by 3 or -3 or anything else.

But if I were to multiply this by -2, I would get ( -2x^2 ); ( -2 \times -2x ) is ( +4x ); ( -2 \times -15 ) is ( +30 ). So I’m going to say it one more time, the three things that I’m boxing off here, these three possible functions, these are all different functions. If I were to graph it, they would all look different, but they all have the same two real solutions ( x = -3 ) and ( x = 5 ).

So now, let's see which choices match up: ( 2x^2 - 4x - 30 ), ( 2x^2 - 4x - 30 ). I like this one right here and then ( -2x^2 + 4x + 30 ), ( -2x^2 + 4x + 30 ). I like this one here as well, so I'm done.

More Articles

View All
Mutation as a source of variation | Gene expression and regulation | AP Biology | Khan Academy
In many videos when we’ve discussed evolution and natural selection, we’ve talked about how variation in a population can fuel natural selection and evolution. So if you have a population of circles, obviously a very simple model here, maybe some of these…
Influence of political events on ideology | AP US Government & Politics | Khan Academy
In discussing political socialization, we’ve talked a lot about factors that go into how people develop their opinions on government and politics. Your family, your friends, your demographic characteristics like your race or gender, they all contribute to…
3 Stoic Ways To Be Happy
Many people these days are concerned with achieving a happy life but often lack the skills and knowledge to do so. Luckily, thousands of years ago, the old Stoics already figured out how to suffer less and enjoy more with a system of exercises, wisdom, an…
Helping to Protect the Okavango Basin | National Geographic
This is a perfect wilderness. It’s vast. Unending. When this wetland floods, it grows to around 22 thousand square kilometers, becoming visible from space. Surrounded by the Kalahari Desert—one of the driest places on earth—the Okavango Delta is a water w…
How a Shark Attack Survivor Invented Cage Diving
A lot of people would say you have got reason more than most to hate sharks, and yet you don’t. Can you explain it? It was in a spear fishing championship that I was the reigning champion. It was a six-hour competition. After four hours, many fish had …
House Hack: How to live FOR FREE by investing in multifamily real estate
What’s up you guys, it’s Graham here. So, as your real estate agent and real estate investor, I’m going to be sharing with you guys exactly how you can cover all of your housing expenses and essentially live for free without ever having to pay rent or com…