yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a quadratic function from solutions | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told a quadratic function ( f ) has two real solutions ( x = -3 ) and ( x = 5 ) that make ( f(x) = 0 ). Select the equations that could define ( f ) in standard form. So, pause this video and have a go at that before we do this together.

All right, so there's a bunch of ways you could approach this, but the way that I think about it is we can express this quadratic in terms of its two solutions. So, you could have ( x - ) the first solution, and the first solution here is when ( x ) is equal to -3, and then times ( x ) us the second solution when ( x ) is equal to 5.

Now, why does this work? Well, think about it. If ( x ) is equal to -3 right here, and if I were to subtract another -3, well then this is going to be equal to 0. ( 0 \times ) anything is zero, and then ( f(-3) ) would be zero. Similarly, if ( x ) were equal to five here, well then this whole thing would be equal to zero; ( 0 \times ) anything is 0, so ( f(5) ) is zero.

Now, this is a definition of the quadratic, but it is not in standard form. Standard form, as a reminder, would be some constant times ( x^2 ) plus some other constant times ( x ) plus some other constant. So, to get there, we have to multiply this out.

And actually, before we do that, let me just simplify a little bit. This is going to be equal to ( x ) when I subtract a -3. That's the same thing as adding three, and then times ( x - 5 ). So, ( x + 3 \times x - 5 ).

And now we can expand this out so we get it to standard form. So, this is going to be equal to ( x \times x ), which is ( x^2 ). We have ( x \times -5 ), which is -5x. We have 3 times ( x ), which is 3x, and then we have 3 times -5, which is -15.

So, last but not least, we have ( x^2 ), and if I am subtracting 5x and then I add 3x, that is -2x minus 15. So, this is ( f(x) ) in standard form.

Now, let's see which of these choices gets me this. So when I look over here, well, what's interesting is all of these have a coefficient of either 2 or -2. I don't see that over here. So what is happening here is I can multiply this whole thing by 2 or -2, and it's not going to change where my zeros are.

Why is that? Well, think about it. If I had a 2 over here, when ( x ) is equal to 5, this is going to be ( 0 \times ) something (\times 2); it's still going to be equal to zero. Similarly, if that were a negative -2, so I'm going to have the same zeros if I multiply it by really any number that is not zero.

So let's do that. If I were to multiply this equation by positive 2, I need to multiply all of them by two. I'm running out of space, so I'll do it up here. We would get ( f(x) ) is equal to ( 2 \times x^2 ), which is ( 2x^2 ); ( 2 \times -2x ) is -4x; ( 2 \times -15 ) is -30. That's one way we could think about it.

Another way we could say maybe ( f(x) ) is going to be equal to, and to be clear, these are not the same functions. When I multiply it by 2 or -2, it does fundamentally change the function, but they would have the same zeros; they would have the same two real solutions ( x = -3 ) and ( x = 5 ).

So if I were to say, “Well, maybe instead of this, ( f(x) ) could be this times -2,” once again, it's a different ( f(x) ); it's a different function. In these situations, I'm just trying to find out all the possibilities, and there could be many more. I could multiply it by 3 or -3 or anything else.

But if I were to multiply this by -2, I would get ( -2x^2 ); ( -2 \times -2x ) is ( +4x ); ( -2 \times -15 ) is ( +30 ). So I’m going to say it one more time, the three things that I’m boxing off here, these three possible functions, these are all different functions. If I were to graph it, they would all look different, but they all have the same two real solutions ( x = -3 ) and ( x = 5 ).

So now, let's see which choices match up: ( 2x^2 - 4x - 30 ), ( 2x^2 - 4x - 30 ). I like this one right here and then ( -2x^2 + 4x + 30 ), ( -2x^2 + 4x + 30 ). I like this one here as well, so I'm done.

More Articles

View All
Genetics vocabulary | Inheritance and variation | Middle school biology | Khan Academy
We know that any sexually reproducing organism is getting DNA from both its male parent and its female parent, and that’s true also for human beings. You might know we have 23 pairs of chromosomes, but let’s zoom in on one of those pairs. So, let’s say th…
The Stock Market Just Peaked
What’s up, Graham? It’s guys here. So, between record high inflation, imminent rate hikes, and outsized earnings, there’s no denying that there’s a lot of uncertainty and opposing viewpoints in the market right now. On the one side, we have some of the m…
These Mini-Ships Teach Pilots How to Navigate Major Waterways | National Geographic
When you look at the ships, you may think that they’re small toys. But the minute you get on it, the power is to scale to the size, and it becomes very real, very quickly. When we build a new ship, the first question is, is this ship correct? Is it close …
Woman Struck by Meteorite | Smarter Every Day 84
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, you probably didn’t know that Alabama has its own Museum of Natural History. We also have the only meteorite to ever strike a human being. You want to check it out? It’s known as the Hodes meteo…
COMIC-CON 2010: Halo: Reach Exclusive HD Footage - Forge World Beyond the Canyon, LE Xbox and more.
Hey everybody, Jeff Rman and Adam Mlin here from Wacky Gamer. We’re here at the 2010 Comic-Con. We’re going to be posting a bunch of footage next week on Wacky Gamer Comedy, so make sure to subscribe. But for now, check out this awesome footage from the …
Spinning Tube Trick
[Applause] Check this out! I have a piece of PVC electrical conduit, and on one end I’ve labeled an O, and the other end I’ve labeled an X. Now I’m going to put it on the table and press down with my forefinger on the O, and I’m going to give it a [Applau…