yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mean value theorem example: square root function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let ( F(x) ) be equal to the ( \sqrt{4x - 3} ), and let ( C ) be the number that satisfies the Mean Value Theorem for ( F ) on the closed interval between 1 and 3, or ( 1 \leq x \leq 3 ). What is ( C )?

So, let's just remind ourselves what it means for ( C ) to be the number that satisfies the Mean Value Theorem for ( F ). This means that over this interval, ( C ) is a point where the slope of the tangent line at ( x = C ) (which I could write as ( F'(C) )) is equal to the slope of the secant line that connects these two points.

So this is going to be equal to the slope of the secant line that connects the points ( (3, F(3)) ) and ( (1, F(1)) ). So, this is going to be ( \frac{F(3) - F(1)}{3 - 1} ).

If you wanted to think about what this means visually, it would look something like this. So if this is our x-axis and this is 1, 2, actually let me spread it out a little bit more: 1, 2, and 3. You have ( (1, F(1)) ) right over there, so that is at the point ( (1, F(1)) ). And we could evaluate that; actually, what that's ( (1, 1) ), right? So that's going to be the point ( (1, 1) ).

Then you have the point ( (3, \ldots) ). Let's see, you're going to have ( 4 \cdot 3 = 12 - 3 = 9 ), so it's going to be ( (3, 3) ). Maybe it's right over there: ( (3, 3) ). The curve might look something like this; it might look something like that.

If you think about the slope of the line that connects these two points, the line that connects those two points—all the Mean Value Theorem tells us is that there's a point between 1 and 3 where the slope of the tangent line has the exact same slope. So if I were to eyeball it, it looks like it's right around there, although we are actually going to solve for it.

So, some point where the slope of the tangent line is equal to the slope of the line that connects these two endpoints and their corresponding function values. So that is ( C ); that would be ( C ) right over there.

So really, we just have to solve this. Let's first just find out what ( F'(x) ) is, and then we could substitute ( C ) in there and evaluate this on the right-hand side.

So, I'm going to rewrite ( F(x) ). ( F(x) ) is equal to ( (4x - 3)^{1/2} ). It makes it a little bit more obvious that we can apply the power rule and the chain rule here.

So, ( F'(x) ): ( F'(x) ) is going to be the derivative of ( (4x - 3)^{1/2} ) with respect to ( (4x - 3) ). So that is going to be ( \frac{1}{2} (4x - 3)^{-1/2} \cdot \frac{d}{dx}(4x - 3) ). The derivative of ( 4x ) with respect to ( x ) is just 4, and the derivative of -3 with respect to ( x ) is going to be 0.

So the derivative of ( 4x - 3 ) with respect to ( x ) is 4, so times 4. Thus, ( F'(x) = 4 \cdot \frac{1}{2} (4x - 3)^{-1/2} \cdot 4 = \frac{2}{\sqrt{4x - 3}} ).

Now, we could rewrite this as ( F'(C) = \frac{2}{\sqrt{4C - 3}} ).

What is that going to be equal to? That is going to be equal to—let’s see—( F(3) ) we already figured out is 3, and ( F(1) ) we already figured out is 1.

So we get ( \frac{F(3) - F(1)}{3 - 1} = \frac{3 - 1}{3 - 1} = \frac{2}{2} ), which is equal to 1. So there’s some point between 1 and 3 where the derivative at that point—the slope of the tangent line—is equal to 1.

So, let's see if we can solve this thing right over here. Well, we can multiply both sides of this by ( \sqrt{4C - 3} ).

So then we are going to get ( 2 = \sqrt{4C - 3} ). All I did is multiply both sides of this by ( \sqrt{4C - 3} ) to get rid of this in the denominator.

Now, to get rid of the radical, we can square both sides. So now we can square both sides and we get ( 4 = 4C - 3 ).

Add 3 to both sides: ( 7 = 4C ). Then divide both sides by 4. I'll go right here to do it: you're going to get ( C = \frac{7}{4} ), which is equal to ( 1.75 ).

So actually, the ( C ) value is a little bit closer; I hand drew this, it's closer to about right over there on our diagram. And actually, that looks pretty good.

I just hand drew this curve, so it’s definitely not exact, but anyway, hopefully, that gives you a sense of what’s going on here.

We’re just saying, hey, the Mean Value Theorem gives us some ( C ) where the slope of the tangent line is the same as the slope of the line that connects ( F(1) ) and ( F(3) ).

More Articles

View All
Something Strange Happens When You Follow Einstein's Math
You can never see anything enter a black hole. (bell dings) Imagine you trap your nemesis in a rocket ship and blast him off towards a black hole. He looks back at you shaking his fist at a constant rate. As he zooms in, gravity gets stronger, so you woul…
A day in my life Japan Vlog-Tokyo Korean Town
Hi guys, it’s me Rudy. Today I’m back with another Japan vlog! Somebody commented that he is bored of seeing the waking up and the breakfast scene that I always include in my vlogs, so today I will listen to that feedback and skip that part. If you’re int…
Extraneous solutions of radical equations (example 2) | High School Math | Khan Academy
We’re asked which value for D we see D in this equation here makes x = -3 an extraneous solution for this radical equation. √(3x + 25) is equal to D + 2x, and I encourage you to pause the video and try to think about it on your own before we work through …
JOKER | Psychology & Philosophy (based on Carl Jung & Albert Camus)
The Joker is a recurring supervillain from DC comics and is the archenemy of Batman. In the many books and movies about the Joker, he is portrayed as an unpredictable, bloodthirsty, crazy psychopath that wants to see the world burn. Hence, his nicknames l…
Partial sums: term value from partial sum | Series | AP Calculus BC | Khan Academy
We’re told that the nth partial sum of the series from N equals one to infinity of a sub n is given by, and so the sum of the first n terms is N squared plus 1 over n plus 1. They want us to figure out what is the actual seventh term. And like always, pau…
Youngest Face Transplant Recipient in U.S. | National Geographic
That’s true. Anything specifically you guys need information on right now? We got that call, let’s-a-go. You need to be here tonight at 7 o’clock. [Music] [Music] Yeah, we’re gonna start with the donor, and I think Katie will probably get down there by a…