yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Mean value theorem example: square root function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let ( F(x) ) be equal to the ( \sqrt{4x - 3} ), and let ( C ) be the number that satisfies the Mean Value Theorem for ( F ) on the closed interval between 1 and 3, or ( 1 \leq x \leq 3 ). What is ( C )?

So, let's just remind ourselves what it means for ( C ) to be the number that satisfies the Mean Value Theorem for ( F ). This means that over this interval, ( C ) is a point where the slope of the tangent line at ( x = C ) (which I could write as ( F'(C) )) is equal to the slope of the secant line that connects these two points.

So this is going to be equal to the slope of the secant line that connects the points ( (3, F(3)) ) and ( (1, F(1)) ). So, this is going to be ( \frac{F(3) - F(1)}{3 - 1} ).

If you wanted to think about what this means visually, it would look something like this. So if this is our x-axis and this is 1, 2, actually let me spread it out a little bit more: 1, 2, and 3. You have ( (1, F(1)) ) right over there, so that is at the point ( (1, F(1)) ). And we could evaluate that; actually, what that's ( (1, 1) ), right? So that's going to be the point ( (1, 1) ).

Then you have the point ( (3, \ldots) ). Let's see, you're going to have ( 4 \cdot 3 = 12 - 3 = 9 ), so it's going to be ( (3, 3) ). Maybe it's right over there: ( (3, 3) ). The curve might look something like this; it might look something like that.

If you think about the slope of the line that connects these two points, the line that connects those two points—all the Mean Value Theorem tells us is that there's a point between 1 and 3 where the slope of the tangent line has the exact same slope. So if I were to eyeball it, it looks like it's right around there, although we are actually going to solve for it.

So, some point where the slope of the tangent line is equal to the slope of the line that connects these two endpoints and their corresponding function values. So that is ( C ); that would be ( C ) right over there.

So really, we just have to solve this. Let's first just find out what ( F'(x) ) is, and then we could substitute ( C ) in there and evaluate this on the right-hand side.

So, I'm going to rewrite ( F(x) ). ( F(x) ) is equal to ( (4x - 3)^{1/2} ). It makes it a little bit more obvious that we can apply the power rule and the chain rule here.

So, ( F'(x) ): ( F'(x) ) is going to be the derivative of ( (4x - 3)^{1/2} ) with respect to ( (4x - 3) ). So that is going to be ( \frac{1}{2} (4x - 3)^{-1/2} \cdot \frac{d}{dx}(4x - 3) ). The derivative of ( 4x ) with respect to ( x ) is just 4, and the derivative of -3 with respect to ( x ) is going to be 0.

So the derivative of ( 4x - 3 ) with respect to ( x ) is 4, so times 4. Thus, ( F'(x) = 4 \cdot \frac{1}{2} (4x - 3)^{-1/2} \cdot 4 = \frac{2}{\sqrt{4x - 3}} ).

Now, we could rewrite this as ( F'(C) = \frac{2}{\sqrt{4C - 3}} ).

What is that going to be equal to? That is going to be equal to—let’s see—( F(3) ) we already figured out is 3, and ( F(1) ) we already figured out is 1.

So we get ( \frac{F(3) - F(1)}{3 - 1} = \frac{3 - 1}{3 - 1} = \frac{2}{2} ), which is equal to 1. So there’s some point between 1 and 3 where the derivative at that point—the slope of the tangent line—is equal to 1.

So, let's see if we can solve this thing right over here. Well, we can multiply both sides of this by ( \sqrt{4C - 3} ).

So then we are going to get ( 2 = \sqrt{4C - 3} ). All I did is multiply both sides of this by ( \sqrt{4C - 3} ) to get rid of this in the denominator.

Now, to get rid of the radical, we can square both sides. So now we can square both sides and we get ( 4 = 4C - 3 ).

Add 3 to both sides: ( 7 = 4C ). Then divide both sides by 4. I'll go right here to do it: you're going to get ( C = \frac{7}{4} ), which is equal to ( 1.75 ).

So actually, the ( C ) value is a little bit closer; I hand drew this, it's closer to about right over there on our diagram. And actually, that looks pretty good.

I just hand drew this curve, so it’s definitely not exact, but anyway, hopefully, that gives you a sense of what’s going on here.

We’re just saying, hey, the Mean Value Theorem gives us some ( C ) where the slope of the tangent line is the same as the slope of the line that connects ( F(1) ) and ( F(3) ).

More Articles

View All
living alone🌞 | a productive day in my life ☕️📚🖋
[Applause] [Music] Good morning, my love! How you guys are doing? I’m doing awesome! If you watch my other vlogs, you probably know that I love eating. So for today’s breakfast, I was thinking about French toast. Let’s make it! So, I found a recipe for F…
Period of a Pendulum | Simple harmonic motion and rotational motion | AP Physics 1 | Khan Academy
So a simple pendulum is just a mass hanging from a string, and if you were to pull this mass—sometimes it’s called a pendulum bob—if you were to pull it back and then let go, gravity would act as a restoring force, and this mass would swing back and forth…
Visually assessing standard deviation | AP Statistics | Khan Academy
Each dot plot below represents a different set of data. We see that here. Order the dot plots from largest standard deviation (top) to smallest standard deviation (bottom). So pause this video and see if you can do that, or at least if you could rank thes…
Derivatives expressed as limits | Advanced derivatives | AP Calculus BC | Khan Academy
Let’s see if we can find the limit as h approaches 0 of (5 \log(2 + h) - 5 \log(2)), all of that over (h). And I’ll give you a little bit of a hint, because I know you’re about to pause the video and try to work through it. Think of your derivative proper…
Limits of composite functions: external limit doesn't exist | AP Calculus | Khan Academy
So, over here I have two functions that have been visually or graphically defined. On the left here, I have the graph of g of x, and on the right here, I have the graph of h of x. What I want to do is figure out what is the limit of g of h of x as x appro…
Safari Live - Day 114 | National Geographic
And welcome to you from myself, Steve Falconbridge, joined by Fergus on camera. We are out in Toomer, in Sabi Sands, with degrees of 33 degrees Celsius and 89 degrees Fahrenheit. It is a nice warm day; the Sun is beating down. We have developed a bit of a…