yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Energy Internet Explained, with Jeremy Rifkin | Big Think


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

Well, we're all familiar with the first Internet, the communication Internet. We've been on it for 24/25 years, most of us. We use the Internet all the time to communicate and send information. The energy Internet is very, very new. It's now actually being built out in places like Germany, in Denmark, and across Europe, so it's no longer academic.

Here's how it works. We are moving toward renewable energy across Europe. We have millions and millions now of buildings, homes, offices, factories, retail stores that have been transformed into micro power plants, and they are producing their own green electricity on site: solar panels on the roof, vertical wind on the property, geothermal pumps for energy underneath the ground, bio converters to convert garbage to biomass energy in the kitchens, et cetera.

In Germany alone, we've retrofitted one million buildings, made them efficient, put in the insulation, and put these new renewable technologies on the building. A million buildings are producing their own green electricity. And there's a feed-in tariff that gives them a premium for sending their electricity back to the grid; they get more than the market price.

So now we're setting up storage and an energy Internet. You have to store these energies. The sun isn't always shining. Sometimes the wind blows at night; you want the electricity during the day, so we're putting in all sorts of storage technologies like batteries, flywheels, capacitors, and hydrogen. We're most bullish on hydrogen as a storage technology to store these energies so that you can use them when you need them.

Because if the sun's under the clouds, you're in trouble; you've got to store it when the sun is out. And now we're taking the electricity grid of Europe, the whole transmission grid, and we're transforming it to an energy Internet using the same technology we used with the communication Internet. You know, today everywhere in the world, the transmission electricity grid is servo-mechanical; it's 60 years old. It isn't even digitalized.

It's designed to be centralized and go in one direction: where the power is generated, nuclear, fossil fuel power, then you send it to the passive consumer at the end of the line. So this old transmission grid wasn't designed to handle millions of small players generating green electricity on site, solar, wind, et cetera, and sending it back, and then controlling the peak and base flows.

So we are actually transforming the entire electricity grid of Europe to an energy Internet. So when millions of buildings are producing just tiny amounts of green electricity, storing it in hydrogen like we stored media in digital, then if you don't need some of that green electricity in your home, office, or factory at a given moment, you can actually send your green electricity across that energy Internet from the Irish Sea all the way to the edge of Eastern Europe, just like we create information, store it in digital, and share it online.

That actual energy Internet is now coming online in real-time. It's already out there in places like Denmark and Germany and other places. So, the energy Internet is really the Internet brought to energy, and it's a perfect fit.

The great economic revolutions in history occur when new energy regimes emerge and new communication revolutions emerge to organize them. In the 19th century, as we said, you had to have steam power printing to come together with coal and steam power and the locomotive. In the 20th century, we had to have centralized electricity and the telephone to manage the complexities of an oil, auto, and suburban era.

So here in the 21st century, the distributive collaborative peer-to-peer Internet communication, and that's its signature, is now converging with energies that are distributed, had to be organized collaboratively, and scale peer-to-peer. Renewable energies are distributed; they're found everywhere, but they're small amounts.

So, you have to create critical mass by collaborating across entire continents to organize that energy, and then you share them in lateral economies and scale. So, this is th...

More Articles

View All
Using explicit formulas of geometric sequences | Mathematics I | High School Math | Khan Academy
The geometric sequence Asobi is defined by the formula, and so they say they tell us that the E term is going to be equal to 3 * -1⁄4 to the IUS 1 power. So, given that, what is a sub5, the fifth term in the sequence? So pause the video and try to figur…
2015 AP Chemistry free response 1d
Metal air cells need to be lightweight for many applications in order to transfer more electrons with a smaller mass. Sodium and calcium are investigated as potential anodes. A 1.0 gram anode of which of these metals would transfer more electrons, assumin…
Quantitative electrolysis | Applications of thermodynamics | AP Chemistry | Khan Academy
We already know that in an electrolytic cell, current or movement of electrons is used to drive a redox reaction. If we look at a generic reduction half-reaction, the stoichiometry of the half-reaction shows how many electrons are needed to reduce a gener…
these inventions changed the world..
The latrine, the porcelain throne, the Oval Office toilets… do I really need to say anything here? Before toilets, we would literally use buckets or just went into the forest or peed on a tree or something. We didn’t really have any efficient way of getti…
Equations with rational expressions | Mathematics III | High School Math | Khan Academy
So we have a nice little equation here dealing with rational expressions, and I encourage you to pause the video and see if you can figure out what values of x satisfy this equation. All right, let’s work through this together. The first thing I’d like t…
How to Fight Fire or Flooding on a Nuclear Submarine - Smarter Every Day 244
Hey, it’s me, Destin. Welcome back to Smarter Every Day. Earlier this year, I had an amazing opportunity to board a U.S. Navy nuclear submarine on an ice flow in the Arctic. This is the next video in a Smarter Every Day deep dive series into submarines an…