yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The Energy Internet Explained, with Jeremy Rifkin | Big Think


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

Well, we're all familiar with the first Internet, the communication Internet. We've been on it for 24/25 years, most of us. We use the Internet all the time to communicate and send information. The energy Internet is very, very new. It's now actually being built out in places like Germany, in Denmark, and across Europe, so it's no longer academic.

Here's how it works. We are moving toward renewable energy across Europe. We have millions and millions now of buildings, homes, offices, factories, retail stores that have been transformed into micro power plants, and they are producing their own green electricity on site: solar panels on the roof, vertical wind on the property, geothermal pumps for energy underneath the ground, bio converters to convert garbage to biomass energy in the kitchens, et cetera.

In Germany alone, we've retrofitted one million buildings, made them efficient, put in the insulation, and put these new renewable technologies on the building. A million buildings are producing their own green electricity. And there's a feed-in tariff that gives them a premium for sending their electricity back to the grid; they get more than the market price.

So now we're setting up storage and an energy Internet. You have to store these energies. The sun isn't always shining. Sometimes the wind blows at night; you want the electricity during the day, so we're putting in all sorts of storage technologies like batteries, flywheels, capacitors, and hydrogen. We're most bullish on hydrogen as a storage technology to store these energies so that you can use them when you need them.

Because if the sun's under the clouds, you're in trouble; you've got to store it when the sun is out. And now we're taking the electricity grid of Europe, the whole transmission grid, and we're transforming it to an energy Internet using the same technology we used with the communication Internet. You know, today everywhere in the world, the transmission electricity grid is servo-mechanical; it's 60 years old. It isn't even digitalized.

It's designed to be centralized and go in one direction: where the power is generated, nuclear, fossil fuel power, then you send it to the passive consumer at the end of the line. So this old transmission grid wasn't designed to handle millions of small players generating green electricity on site, solar, wind, et cetera, and sending it back, and then controlling the peak and base flows.

So we are actually transforming the entire electricity grid of Europe to an energy Internet. So when millions of buildings are producing just tiny amounts of green electricity, storing it in hydrogen like we stored media in digital, then if you don't need some of that green electricity in your home, office, or factory at a given moment, you can actually send your green electricity across that energy Internet from the Irish Sea all the way to the edge of Eastern Europe, just like we create information, store it in digital, and share it online.

That actual energy Internet is now coming online in real-time. It's already out there in places like Denmark and Germany and other places. So, the energy Internet is really the Internet brought to energy, and it's a perfect fit.

The great economic revolutions in history occur when new energy regimes emerge and new communication revolutions emerge to organize them. In the 19th century, as we said, you had to have steam power printing to come together with coal and steam power and the locomotive. In the 20th century, we had to have centralized electricity and the telephone to manage the complexities of an oil, auto, and suburban era.

So here in the 21st century, the distributive collaborative peer-to-peer Internet communication, and that's its signature, is now converging with energies that are distributed, had to be organized collaboratively, and scale peer-to-peer. Renewable energies are distributed; they're found everywhere, but they're small amounts.

So, you have to create critical mass by collaborating across entire continents to organize that energy, and then you share them in lateral economies and scale. So, this is th...

More Articles

View All
Representing solids, liquids, and gases using particulate models | AP Chemistry | Khan Academy
What we have depicted here in these four images are matter in different states, and we’re using what’s known as a particulate model. These are two-dimensional particulate models, which are simple ways of imagining what is going on at a molecular scale ins…
i HATCHED The 1st Titanic Autumn Teddy Bear In the WORLD! (Pet Sim 99 Anniversary Update)
This is the story of how I got the very first Titanic Autumn teddy bear in the entire world. Oh my God, it’s growing! I can’t believe it! I actually did it! Oh my God, but what if I told you I wasn’t stopping there? You see, this video, we set out to not …
5 Things to Know About the Warming Arctic | Before the Flood
If you look at it from space, the top of the world, the white ice acts like a reflector, like a mirror that sends back sunlight and energy and heat back to space. That’s what made the Arctic the cooling system of the planet. I was walking with Leo on the…
After the Avalanche: Life as an Adventure Photographer With PTSD (Part 3) | Nat Geo Live
I went back to Africa this time. Exploration had taken on a different modality here. We were gonna explore the upper headwaters of the Okavongo, the Cuito river catchment that flows out of the Angolan highlands. Steve Boyes, another NG explorer, took us t…
Modeling with composite functions | Mathematics III | High School Math | Khan Academy
[Voiceover] “Carter has noticed a few quantitative relationships related to the success of his football team and has modeled them with the following functions.” All right, this is interesting. So he has this function, which he denotes with the capital N…
Zeros of polynomials: matching equation to zeros | Polynomial graphs | Algebra 2 | Khan Academy
A polynomial P has zeros when X is equal to negative four, X is equal to three, and X is equal to one-eighth. What could be the equation of P? So pause this video and think about it on your own before we work through it together. All right. So the fact …