yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Measuring area with partial unit squares | Math | 3rd grade | Khan Academy


2m read
·Nov 11, 2024

Each square in the grid is a unit square with an area of 1 square cm. So, each of these squares is 1 square cm. This is 1 square cm, and this is 1 square cm, and so on. Now we're asked, what is the area of the figure? By figure, I'm sure they mean this bluish purplish quadrilateral, and we want to know its area.

Area is talking about how much space the shape covers. How much space does this quadrilateral cover? How many square cm does the quadrilateral cover? To figure it out, we could start by counting. Here's one; here's one square cm the quadrilateral covers. I can keep counting like that all of the square cm that I can see.

Here's two, three. Another row's got some here; four, five, six down here. Here's seven, eight. So, there's nine full square cm. Nine square cm, but that's not the entire area; that's not everything it covers. It also covers these small parts, these triangle-shaped little spaces of area, and so we need to count those too.

Let's look over here. Let's look if we drew one of these triangles into a unit square, and then we drew another one on the other half of this unit square. We would see that combined, they make one full unit square. So we can do that. We can take this triangle up here, which is half of a unit square, and combine it with this half of a unit square.

So, if we combine these two together, that's one more unit square. Now we have nine full unit squares plus one more, but there's still more of them. So we can keep combining this half unit square combined with the other one on the bottom, which makes a second unit square.

Finally, there's two more halves here, one, two, which combine to make another whole. So we have nine full unit squares plus three more unit squares that we made by combining. We made one by combining these two, a second unit square with these two, and a third unit square here.

So we have nine full unit squares and then three more unit squares we put together, which is a total of 12 square units, or 12 square cm. In this case, our unit is cm². Twelve square cm. Our figure, our quadrilateral, covers 12 square cm, so it has an area of 12 square cm.

More Articles

View All
My 2 Worst Investments EVER
Hey guys, welcome back to the channel! In this video, we’re going to be talking about literally my two worst investments ever. It’s kind of funny; sometimes in the YouTube comments, I’ll get a comment which is something like, “Oh, Brandon, you’re very qu…
Everest Glaciology - Truth is in the Ice | National Geographic
The very idea that the highest part of the planet has been impacted by human activity ought to be a real wake-up call for everybody. We’re working close to the top of Everest. No other scientists work. The big goal of this National Geographic project is t…
We Worry About Problems We Don't Even Have | Eastern Philosophy
Two people attend a house party, where they socialize with the same guests, drink from the same beer tap, and are exposed to the same music and atmosphere. They decide to share a taxi and drive home when the party is over as they live closely together. “…
Single replacement reactions | Chemistry | Khan Academy
If you put a copper wire in this silver nitrate solution, then you’ll get this beautiful reaction. But instead of copper, if you were to put a wire of gold in the same silver nitrate solution, the same solution as before, this time nothing would happen—no…
Setting Rabbit Snares in the Arctic | Life Below Zero
Iriqtaq Hailstone: We grew up following our parents. My parents always took us along with them. So I have that mentality in my head that if I can’t take my kid then don’t go. [peaceful music] Chip Hailstone: He’s a handsome little boy. So cute. Chip Ha…
Using related volumes | Solid geometry | High school geometry | Khan Academy
[Instructor] We’re told that all of the following figures have the same height. All of the figures except for B have square bases. So that’s a square base, that’s a square, that’s a square, and that’s a square. All of the figures except for C are prisms. …