yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Measuring area with partial unit squares | Math | 3rd grade | Khan Academy


2m read
·Nov 11, 2024

Each square in the grid is a unit square with an area of 1 square cm. So, each of these squares is 1 square cm. This is 1 square cm, and this is 1 square cm, and so on. Now we're asked, what is the area of the figure? By figure, I'm sure they mean this bluish purplish quadrilateral, and we want to know its area.

Area is talking about how much space the shape covers. How much space does this quadrilateral cover? How many square cm does the quadrilateral cover? To figure it out, we could start by counting. Here's one; here's one square cm the quadrilateral covers. I can keep counting like that all of the square cm that I can see.

Here's two, three. Another row's got some here; four, five, six down here. Here's seven, eight. So, there's nine full square cm. Nine square cm, but that's not the entire area; that's not everything it covers. It also covers these small parts, these triangle-shaped little spaces of area, and so we need to count those too.

Let's look over here. Let's look if we drew one of these triangles into a unit square, and then we drew another one on the other half of this unit square. We would see that combined, they make one full unit square. So we can do that. We can take this triangle up here, which is half of a unit square, and combine it with this half of a unit square.

So, if we combine these two together, that's one more unit square. Now we have nine full unit squares plus one more, but there's still more of them. So we can keep combining this half unit square combined with the other one on the bottom, which makes a second unit square.

Finally, there's two more halves here, one, two, which combine to make another whole. So we have nine full unit squares plus three more unit squares that we made by combining. We made one by combining these two, a second unit square with these two, and a third unit square here.

So we have nine full unit squares and then three more unit squares we put together, which is a total of 12 square units, or 12 square cm. In this case, our unit is cm². Twelve square cm. Our figure, our quadrilateral, covers 12 square cm, so it has an area of 12 square cm.

More Articles

View All
Khanmigo Teacher Story - Ms. Bartsch
What I love most about using Conmigo is it gives me the agency as a teacher to be able to kind of set parameters for my classroom while still giving my students exposure to the AI that’s going to be a huge part of the world that they’re heading towards af…
Example question calculating CPI and inflation | AP Macroeconomics | Khan Academy
The CPI, or Consumer Price Index, is used to measure the cost of a typical basket of goods the typical household in the nation of Jacksonia buys. Four loaves of bread, three pounds of cream cheese, and eight books are purchased each week. The prices of th…
From CHAOS to CALM | STOIC STRATEGIES for OVERTHINKING RELIEF | STOICISM INSIGHTS
Hello everyone and welcome back to Stoicism Insights! If you’re new here, make sure to subscribe and hit that notification bell so you won’t miss any of our insightful content. Today’s video is a game-changer; we’re tackling a common struggle that many o…
Introduction to exponential decay
What we’re going to do in this video is quickly review exponential growth and then use that as our platform to introduce ourselves to exponential decay. So let’s review exponential growth. Let’s say we have something that… and I’ll do this on a table here…
Worked example: separable differential equation (with taking log of both sides) | Khan Academy
Let’s say we need to find a solution to the differential equation that the derivative of y with respect to x is equal to x squared over e to the y. Pause this video and see if you can have a go at it. I will give you a clue: it is a separable differential…
Startup Investor School Day 1 Live Stream
And the way the course is organized is there’s a lecture and then there’s a Q&A afterwards. So please hold your questions until the Q&A session at the end unless an instructor explicitly says they want questions during their talk. I will also take…