yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Giant Underwater Cave Was Hiding Oldest Human Skeleton in the Americas | Expedition Raw


2m read
·Nov 11, 2024

ALBERTO NAVA: I mean, you're always looking for something new to discover, but we didn't know what we were going to find when we started on that day. Most of our dives are pretty routine, you know, you just keep finding more tunnels and more tunnels. But every so often you get lucky and you run into these discoveries that have been trapped there for thousands of years.

We just pop up into this huge void. It's like if you entered the Grand Canyon from the side at night. Everywhere you point your light, there were animal remains; there were human remains. It was just a pretty good day. Eventually, my friend points his light toward this cranium, and all of a sudden we discover the most complete and the oldest human remains found in the Americas.

Imagine the pressure if somebody says, "Okay, you go pick up the cranium of the oldest human remains in America." Your hands start shaking. You know, what happens if you drop it? You know, you're underwater and you're looking at this cranium and you see these dark eye sockets. I have this feeling these eyes have not seen anything since thousands of years ago. You're kind of traveling back in time.

In the case of Naia, we have most of her skeleton. The more amazing thing is that you still have intact DNA that researchers can extract from. So that helps you figure out the migration history from humans into the Americas. When we go into this cave, we think that we're doing this great exploration, but in reality, the original explorers of this cave were Naia and her people.

When I have a bad day, either in the jungle or at home, I compare it with what they struggle... to go and find water, and food, and shelter, every day. And they have to fight animals. You know, they have the saber-toothed cat. So for me, it's easy—if I have a problem, I just think about them and I'm like, oh, my problem, it's not very big. [laughs] Hoyo Negro and Naia are the stars of this project, and we all work to bring their stories light so we understand a little bit better about where do we come from.

More Articles

View All
Watch: Putting a Camera on a Whale Shark | Expedition Raw
I’m out here putting Critter cams on whale sharks and hope to better understand their behavior along the reef. We spot a shark; it was coming up to the boat and actually very curious. I didn’t really realize where the shark was. As soon as I jumped in the…
Example of derivative as limit of average rate of change
Stacy wants to find the derivative of f of x = x² + 1 at the point x = 2. Her table below shows the average rate of change of f over the intervals from x to 2 or from 2 to x, and these are closed intervals for x values. They get increasingly closer to two…
How To Travel The World For Free: Credit Cards 101
What’s up you guys? It’s great in here. So, I realized the title of this video sounds like I’m about to pitch you on some weird timeshare opportunity in the Bahamas, and all you got to do is sit through an exciting two-hour seminar to unlock your free rew…
This Rock Climbing Kid Has a Hidden Strength: His Super Mom | Short Film Showcase
The skill of just being disciplined, being able to stay on track and just fight, and even take a few knocks and get back up, and just keep, you know, on that path or whatever you choose in life, that’s a skill I think that’ll be with him forever. I think …
Citizenship in early America, 1789-1830s | Citizenship | High school civics | Khan Academy
In this video and the one that follows, I’m going to give you a brief overview of citizenship rights in early America. Who was considered a citizen? Did having citizenship mean that you had the right to vote? How did citizenship and voting rights change…
Second partial derivative test
In the last video, we took a look at this function ( f(x, y) = x^4 - 4x^2 + y^2 ), which has the graph that you’re looking at on the left. We looked for all of the points where the gradient is equal to zero, which basically means both partial derivatives …