yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Mule Mayhem | Live Free or Die
Oh, oh, damn it! Oh, God damn it! Hold, hold, hold! Damn it! Goddamn mules! Hold! No, you hold! Too much traffic, motorcycles, bicyclists—everything was too much for the mule. And once he started plunging down that hill and the jugs were hitting the bush…
Journey Into Old Havana's Vibrant History | National Geographic
[Music] With diverse indigenous African and European roots, Havana’s culture and architecture reflect Cuba’s complex history of conquest, slavery, liberation, and revolution. [Music] Chosen for its strategic location on the island’s northwestern coast in …
Spooked in the Woods | Port Protection
The woods in the middle of nowhere you would think would be a quiet, peaceful little place. However, when the weather is crummy, it can be a very loud, mysterious, nerve-wracking area. Not only mysterious but dangerous. Here in the dense rainforest, winds…
Labor and Capital Are Old Leverage
So why don’t we talk a little bit about leverage? The first tweet in the storm was a famous quote from Archimedes, which was: “Give me a lever long enough and a place to stand, and I will move the earth.” The next tweet was: “Fortunes require leverage.” …
Michael Burry's BIG Bet On Inflation (The Big Short 2.0?)
Well, earlier in the week, we did a deep dive into Michael Burry’s put option position against Tesla. But that wasn’t even the biggest takeaway from Cyan Asset Management’s 13F filing this quarter. The most alarming thing you find when you read between th…
Constant-pressure calorimetry | Thermodynamics | AP Chemistry | Khan Academy
Calorimetry refers to the measurement of heat flow, and a device that’s used to measure heat flow is called a calorimeter. An easy way to make a calorimeter is to use two coffee cups. So at the base here, we have one coffee cup, and then we can also use a…