yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Compound-complex sentences | Syntax | Khan Academy
Hello Garans, hello Rosie, hi Paige. So in this video, we’re going to talk about compound complex sentences. We just covered complex sentences in the last video, which is where you’ve got a simple sentence or one independent clause, and then that’s accomp…
Ron Howard on Science and Technology | Breakthrough
Science is everywhere, and science and technology is moving at such a pace that it’s a huge challenge to keep up with it. It’s therefore all the more dynamic, all the more fascinating to try to capture a moment, understand it now, have it there for the fu…
Dividing whole numbers by decimals examples
Let’s say we want to figure out what eight divided by four tenths is. Pause this video and try to figure it out on your own before we do it together. All right, now one way to approach this is to think about everything in terms of tenths. And why tenths,…
Worked example: finite geometric series (sigma notation) | High School Math | Khan Academy
Let’s take, let’s do some examples where we’re finding the sums of finite geometric series, and let’s just remind ourselves in a previous video we derived the formula where the sum of the first n terms is equal to our first term times 1 minus our common r…
Death & Dynasties
Rulers are often related, with power passing from member to member, forming a dynasty. This occurs not just with royalty or dictators, but also with representatives in a democracy. Families frequently pass power or compete with other families for a turn a…
Differentiability at a point: algebraic (function isn't differentiable) | Khan Academy
Is the function given below continuous differentiable at x equals 1? They define the function G piecewise right over here, and then they give us a bunch of choices: continuous but not differentiable, differentiable but not continuous, both continuous and …