yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Subtracting integers find the missing value | 7th grade | Khan Academy
So if I were to ask you if I were to tell you that negative 3 minus blank is equal to negative 4, can you pause this video and figure out what this blank is? All right, now let’s do this together, and I’m going to do this by drawing out a number line bec…
Narcotics Hidden in a Fan | To Catch a Smuggler
[plane landing] [suspenseful music] OFFICER MARRERO: We’re going to run all these boxes. Through the mail facility, we get narcotics every day. You name it, we’ve seen it loaded. Sneakers, coffee beans, radios, hard drives, electronic equipment. Nothing …
Free energy and equilibrium | Applications of thermodynamics | AP Chemistry | Khan Academy
Let’s say we have a generic reaction where reactants turn into products, and our goal is to think about the relationship between free energy and this reaction when it comes to equilibrium. First, we need to consider the equation that allows us to calculat…
How NOT to Get Offended (Stoic Wisdom for a Thicker Skin)
It’s quite easy to offend someone these days. Even me stating this observation can rub someone up the wrong way. In the age of social media, we get bombarded with crude language, opinions we don’t like, and stuff that’s downright mean. That’s probably why…
Chromosomes and genes | Inheritance and variation | Middle school biology | Khan Academy
This is a super cute puppy. He has a pink tongue, black fur, and a very friendly personality. We know that when this puppy grows up, he will have a healthy weight of about 70 pounds. He will love to play fetch and enjoy snuggles with his human family. We…
The Global Spermageddon | Explorer
Our first story has serious global implications, the very survival of the human species, but it’s about something that really couldn’t get more personal—fertility. Researchers have recently found staggering drops in male sperm count in Western countries. …