yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Taoism: The Philosophy of Flow
Your alarm rings, waking you up from an unrestful sleep. You stretch across the bed and tap your phone to silence the disturbing noise. You’re tempted to pick it up and see what’s going on in the world, but you try really hard to stay away from it. Remind…
A Fun, Animated History of the Reformation and the Man Who Started It All | Short Film Showcase
[Music] A most precise and nuanced look into the life of the man, legend, and visionary Martin Luther. One day, when Luther is 21 years old, he experiences something which will affect him for the rest of his life. Suddenly, a thunderstorm—a wild, violent…
Veritasium Bungee Jumps!
All right, I’m here at the Karu bridge in, uh, New Zealand, where the first person threw themselves off this bridge with nothing but an elastic band tied around their legs. So I’m going to give it a shot today and, uh, find out what it feels to accelerate…
The NEW GameStop Infinite Money Glitch
What’s up, Graham? It’s guys here. So, you know the saying that lightning never strikes the same place twice? Well, the lie detector test determined that was a lie. And in the last week, GameStop did it again! The infinite money printer is back on, strong…
From 2005: Four young internet entrepreneurs
One way to increase your net worth is to use the internet for all it’s worth. Everywhere you look, computer savvy people are doing just that, many of them astonishingly young. Our cover story is reported now by David Pogue of the New York Times. Remember…
15 Signs You Are Financially Mature
You know, up until a certain point in life, money comes and money goes, and that’s about it. You just made a couple of purchases, you’ve got a stable place, a stable income, and things seem to settle. At this point, you start to be more financially mature…