yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Laplacian computation example
In the last video, I started introducing the intuition for the Laplacian operator in the context of the function with this graph and with the gradient field pictured below it, and here I’d like to go through the computation involved in that. So, the func…
Mars 101 | National Geographic
[Music] The Babylonians called it Nargal; the Hindus called it Mongala; the Egyptians called it Harder or the Red One. Today, we know it as the Red Planet. For centuries, Mars has aroused our imaginations. The world’s best scientists and people everywhere…
Mega Dust Storms | MARS
[music playing] JIM GREEN: We’ve been studying the dust storms of Mars for quite some time. And there’s a particular season where some of the dust storms can actually go global. Not just regional, but global. Dust storms on Mars can be absolutely enormou…
He Risked Death as First American to Explore Africa's Deepest Parts | National Geographic
We have to go back to who William Stamps Cherry was at the age of 20. He does head out for Africa against everybody’s advice, who said, “You’re going to die over there.” He went into Africa in 1889 and went further in the Congo than any other white man ha…
The Fifth Amendment | The National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy. Today, we’re learning more about the takings clause of the Fifth Amendment. In another video, we’ll discuss the other clauses of the Fifth Amendment, those that deal with self-incrimination and due process of law. But i…
break and continue | Intro to CS - Python | Khan Academy
We may sometimes want to alter the normal control flow of our loops to either terminate early or skip an iteration. To do this, we can use the break and continue statements. A break statement tells the computer to immediately terminate the loop. We write …