yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Tracing program execution | Intro to CS - Python | Khan Academy
Let’s trace a program step by step. This is a common pattern we’ll use to understand what the computer is doing under the hood when we press the Run button. Tracing program execution like this helps us better read and write programs because we can start t…
Command and market economies | Basic economics concepts | AP Macroeconomics | Khan Academy
In this video, we’re going to talk about different ways of structuring an economy. In particular, who owns what and how does an economy decide what to produce and who gets the output of that production. So, on one side, you have what’s known as a command…
Strike First, Strike Hard, No Mercy | The Philosophy of Cobra Kai
It’s not just to reignite his old passion for karate and to avenge his old nemesis, Daniel LaRusso. One of the reasons why Johnny Lawrence re-opens his old dojo, Cobra Kai, is that he believes that by doing so, he can give today’s youth exactly what they …
Measuring area with tiled square units
What we’re going to do in this video is look at two rectangles that have the exact same area, and we’re going to measure each of them with a different square unit. So, this top unit right over here, this is a square foot. That means its height is one foo…
Worked examples: Calculating equilibrium constants | Equilibrium | AP Chemistry | Khan Academy
An equilibrium constant can be calculated from experimentally measured concentrations or partial pressures of reactants and products at equilibrium. As an example, let’s look at the reaction where N2O4 in the gaseous state turns into 2NO2, also in the gas…
15 Hidden Behaviors of Incredibly Successful People
True success whisperers and incredibly successful people keep their actions private. These are 15 hidden behaviors only the truly successful do. Welcome to Alux. First stop: silent observation. Now, success stories often attribute victories to relentless…