yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
My Awesome Australia Adventure! - Smarter Every Day 99
Hey, it’s me Destin. Welcome back to Smarter Every Day. I apologize up front. My left eardrum has exploded. I have no idea how loud I’m talking. My feedback loop is broken. Anyway, the purpose of this video is to inform you what I did in Australia for two…
The Theme System Journal
Hello internet! If you didn’t already know, I’m a big fan of the yearly theme: a broad rainbow above your goals to help direct you on part of your journey through this life. And yes, I know exactly how that sounds. But if you’re intrigued and/or wondering…
Diving Between the Continents (Silfra, Iceland) - Smarter Every Day 161
Destin: “You wanna do it, yeah, do it.” “Very good.” “Hey, it’s me Destin, welcome back to Smarter Every Month… day! Smarter Every Day.” “If you’ve never had four children, you know that four children are a handful.” “Today on Smarter Every Day, my wife …
Creativity break: how do you get into your creative zone? | Khan Academy
[Music] I allow my brain to do the work to get into my creative zone when I have a problem to resolve. Sometimes I just sleep on it, and I let my subconscious mind work through resolving problems and solving problems. Our brains are always at work, like …
Minimum efficient scale and market concentration | APⓇ Microeconomics | Khan Academy
In this video, we’re going to think about the concept of minimum efficient scale and then how that impacts market concentration. We’re going to make sure we understand what both of these ideas are. So first of all, minimum efficient scale, you can view i…
Why creating a strong password really matters
All right, Guemmy. So, as long as I can remember on the internet, you know, there’s always been, you create passwords, and I feel like every year they’re asking me to create more and more hard or more difficult to remember passwords. Why is this happening…