yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
O'Leary Ventures President Talks Mortgages, Wines and Bags of Cash!
Now this is the story of a young man, a law school graduate, who, uh, paid off his student loan, huge student loan, with cash. How do you do something like this? We’re joined now by Alex Kenji of Toronto, president of O’Leary Ventures, a startup investmen…
Transformations, part 1 | Multivariable calculus | Khan Academy
So I have talked a lot about different ways that you can visualize multi-variable functions. Functions that will have some kind of multi-dimensional input or output. These include three-dimensional graphs, which are very common, contour maps, vector field…
2015 AP Calculus BC 2d | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Find the total distance traveled by the particle from time t equals zero to t equals one. Now let’s remember, they didn’t say find the total displacement; they said find the total distance traveled by the particle. So if something goes to the right by on…
Get to know me better... Q&A
[Music] Okay, from Elon, question on X will generate interesting responses. This is a PVP game. What’s that mean? What’s the PV? I don’t know what that means. Do you guys know what that means? Welcome back to the channel! Today we’re answering a few que…
Continuity at a point | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is come up with a more rigorous definition for continuity and the general idea of continuity. We’ve got an intuitive idea of the past; that a function is continuous at a point is if you can draw the graph of that funct…
Can Your Dreams Tell the Future?
Have you ever had a dream that came true the next day? Have you ever had a vision of the future and then watched it play out in the real world? Have you ever had a feeling that something big was going to happen, and then it does? You are not alone. One ni…