yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Mind-Blowing Theories on Nothingness You Need to Know | Documentary
Have you ever found yourself lost in deep thoughts about what nothingness truly is? Today, we are going to explore mind-blowing questions about nothingness and seek all the answers. Does ‘nothing’ exist, or is there only ‘quantum foam’? Does “The Schwinge…
Example plotting corners of rectangle
The four corners of a rectangle are located at the points (11, 7), (11, 0), (2, 0), and (2, 7). Plot the four corners of the rectangle on the coordinate plane below, and they have these dots, and we can actually move these around for the four corners of o…
Who versus whom | The parts of speech | Grammar | Khan Academy
Hello grammarians! Welcome to one of the thorniest fights in English usage today: the question of whether or not you should use “who” or “whom” in a sentence as a relative pronoun. So there’s this basic idea that “who” is the subject form, and “whom” is …
Coffee: The Greatest Addiction Ever
Every man, woman, and child. The world’s largest buyer of coffee, the US, has to import nearly all of this as the coffee trees from which caffeine is harvested will only grow at commercial levels between the Tropic of Cancer and the Tropic of Capricorn in…
Complex rotation
So now we’ve seen rotation by multiplying J by J over and over again, and we see that that’s rotation. Now let’s do it for the general idea of any complex number. So if I have a complex number, we’ll call it Z, and we’ll say it’s made of two parts: a rea…
Advice on Organizing and Running Growth Teams from Dan Hockenmaier and Gustaf Alströmer
Today we have Dan Hakan Meyer and Gustav All Strimer. So, Dan was the founder, advised investor, and advisor at Basis One, which is growth strategy consulting. Previous to that, you were a director of growth marketing at Thumbtack. Gustav’s a partner at Y…