yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Effects of transatlantic voyages, 1492-1607 | Khan Academy | AP US History
When Christopher Columbus first arrived in the Americas, he had no way of knowing that he had set off a complex chain of events that would lead to everything from humanity’s largest demographic disaster to the founding of a new nation nearly 300 years lat…
The Best and Worst Prediction in Science
How much energy is there in empty space? We believe there is 10 to the minus 8th ergs in every cubic centimeter of empty space. How much is an “erg”? It’s a very small amount. You know, if a mosquito flaps its wings, or a fly I guess flaps its wings, it’s…
YC SUS: Eric Migicovsky & Dalton Caldwell discuss pivoting & pitching
Nope, not live. Almost live. Now we’re live. Okay! My name is Eric Makovski. I’m the startup school course facilitator. Welcome to another live Q&A. We’re joined today by Dalton. “How’s it going?” I’m Dalton Caldwell. I’m a partner at Y Combinator. …
Sanskrit connections to English | World History | Khan Academy
In the 18th century, you start to have significant interaction between the English and the Indians, especially in the East Indian Company. And as part of that, you start to have Western scholars start to really study Sanskrit and the Vedas. As they do the…
Atoms As Big As Mountains — Neutron Stars Explained
Neutron stars are one of the most extreme things in the universe. They’re like giant atom cores. Kilometers in diameter, unbelievably dense and violent. But how can something like this even exist? The life of a star is dominated by two forces being in ba…
Slowly into Secret Scotland | National Geographic
I believe that to truly slow down, you have to change the way you travel. Cycling allows me to travel more fluidly, to connect more deeply with my surroundings and, I hope, with the people who call this place home. I’m Michael George and I’m a National Ge…