yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Groups Search for Consensus, Individuals Search for Truth
Truth is very fought over. When we say truth, the biggest problem we’re going to run into is that what society wants for you is not what’s always good for you. Society is the largest group, and groups search for consensus; individuals search for truth. It…
How to Invest $1.6 BILLION DOLLARS if you win the Powerball Lottery
What’s up you guys, it’s Graham here! So here’s something that’s probably all crossed our minds at some point or another: have you ever been faced with the dilemma of what happens when you win the one point six billion dollar jackpot lottery, and you sim…
How Society Is Making Us More Scared Than Ever
Once upon a time, there was a wild pig and a sea cow. The two were best friends who enjoyed racing against each other. One day, the sea cow got injured and couldn’t race any longer, so the wild pig carried him down to the sea, where they could race foreve…
Why plan for retirement | Investments and retirement | Financial Literacy | Khan Academy
So let’s think a little bit about retirement. I know some of y’all who are younger are like, “Hey, I’m just trying to figure out what to do with my own life. Why am I already thinking about my life when I am in my 60s or 70s or even later?” The first thi…
Manipulating expressions using structure | Mathematics I | High School Math | Khan Academy
So we’re told that suppose a plus b is equal to zero. Which of these expressions equal a * b? And like always, pause the video and see if you can figure it out. These are actually pretty fun problems! All right, so let’s see if we can do a little bit of …
The Unsung Heroes of the Arctic - Ep. 3 | Wildlife: The Big Freeze
[Bertie] Polar bears are such icons of the Arctic. It’s hard for anything else to escape their shadow. But what if I told you only a few inches from the ground, there’s a host of less celebrated little creatures who’ve made a playground of these brutal co…