yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
How the LGBTQ Community Taught America to Have Compassion: Service, HIV, AIDS | Judith Light
For the LGBTQ community, for those of us who were inspired by the way the community operated during the height of the AIDS pandemic, there was a world that we were living in where people were dying in droves. We were at several funerals a week, and we wer…
How Many Moons Could Earth Handle? #kurzgesagt #shorts
How many moons could Earth handle? The main factor is space. Any moon needs a clean orbit and we have to take two things into account. One, it can’t be too far; otherwise, it won’t follow a stable orbit around us. Two, it can’t be too close either, or the…
2015 Maps of Meaning 07a: Mythology: Chaos / Part 1 (Jordan Peterson)
So the last time we met, we talked about the Greek myth, I believe. Is that correct? We talked about Horus and Isis. Okay, good. So I want to talk to you about this symbol today, which reminds me there’s another slide that I need to use to do that. This t…
Shepard Tone Illusion .... and more!
Hey, Vsauce. Michael here. And today I released a brand new Vsauce Leanback. A playlist of educational videos from all over YouTube that I think are cool and I host sort of like a Vsauce TV show. You can start that by clicking the box up in the corner or…
Why you SHOULDN'T invest in Real Estate...
What’s up you guys? It’s Graham here. So, I realized that probably 80% of the videos on this channel are all about the benefits and my excitement of owning real estate. Now for me, this has been something that I’ve been doing since I was 18 years old. So…
Analyzing concavity (algebraic) | AP Calculus AB | Khan Academy
So I have the function G here; it’s expressed as a fourth degree polynomial. I want to think about the intervals over which G is either concave upwards or concave downwards. Let’s just remind ourselves what these things look like. Concave upwards is an i…