yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Genes, proteins, and cells | Genes, cells, and organisms | High school biology | Khan Academy
So when I was younger, around seven or eight years old, I used to have a betta fish named Bob, and he happened to be a blue colored fish. Now, I’ve always wondered how he got his color. For example, were his parents also blue? Did he have any siblings tha…
Non-typical pay structures | Employment | Financial Literacy | Khan Academy
In this video, we’re going to think about all of the ways that someone can work or get paid or have employment. We’re not going to list out every occupation or how someone might do it, but the general categories. Now some of you might be saying, “Well, is…
15 Little Habits To Have a Better Day
You know, Alexir, the simplest habits are the most effective. They’re preached over and over again for a reason. It’s because those habits help you live a peaceful, productive, and satisfying life. Eat your greens and your protein, floss daily, put on sun…
Introduction to proteins and amino acids | High school biology | Khan Academy
What we’re going to do in this video is talk about proteins. Some of you all might already be familiar with them, at least in some context. If you look at any type of packaging on food, you’ll oftentimes see a label that has protein listed in a certain nu…
Matrix Theory: Relativity Without Relative Space or Time
[Music] Let us consider a classic relativity scenario. Your friend gets on a rocket ship and blasts off towards Mars at nearly the speed of light. During this journey, his clocks tick slower, his lengths contract, and when he arrives at his destination, h…
Taxes intro | Taxes and tax forms | Financial Literacy | Khan Academy
So, a lot of folks are familiar with government doing things like building roads and bridges, or providing schooling, or parks, or at the federal level, National programs, or say the military. The natural question is: how does the government pay for all o…