yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
My advice to be successful if you’re a teenager watching YouTube right now…
What’s up you guys, it’s Graham here. So it seems like a large part of my audience are all teenagers or people like in high school. Sure, some in middle school or like people not quite 18. I get asked all the time, like what can I do when I’m still at hig…
8 Key Principles To OVERCOME Self-Doubt & Negative Thoughts | Stoicism Insights
Every single one of us at some point in our lives faces that sneaky, undermining whisper of self-doubt. It’s like a shadow that lingers just out of sight, waiting to cloud our decisions and dampen our spirits. But here’s the catch. The real battle isn’t a…
Relative pronouns | The parts of speech | Grammar | Khan Academy
Grammarians, we’re going to talk about relative pronouns today. What relative pronouns do is they link clauses together, specifically independent and dependent clauses. If you don’t know what independent and dependent clauses are, that’s okay. Just suffi…
Backspin Basketball Flies Off Dam
Recently, some friends of mine went to the Gordon Dam in Tasmania, which is 126.5 meters (or 415 feet) high. Then they dropped a basketball over the edge. You can see that the basketball gets pushed around a bit by the breeze, but it lands basically right…
Warren Buffett: Should You Invest in a Stock With a High P/E Ratio?
Olympic diving and Olympic diving. You know they have a degree of difficulty factor, and if you can do some very difficult dive, the payoff is greater if you do it well than if you do some very simple dive. That’s not true in investments. You get paid jus…
Mosaic plots and segmented bar charts | Exploring two-variable data | AP Statistics | Khan Academy
Let’s say we’re looking at some type of disease, and we want to see if there’s any relationship between people having antibodies for that disease and whether they are adult children or infants. If you don’t know what antibodies are, these are things that…