yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Hurricane Katrina Survivor Gives Tours of Its Destruction | National Geographic
Let me tell you a little bit about the City of New Orleans. Right after Katrina, I kept hearing everybody say, “Why should we pay our tax dollars to bring New Orleans back? They below sea level.” I am a tour guide. I do Katrina tours. I never was an emoti…
Prelude to the Peloponnesian War | World History | Khan Academy
In the last few videos, we talked about the Greco-Persian Wars, or we could say the Persian invasion of Greece. In the first wave, the first Persian invasion, the Athenians were able to stop them at Marathon. Then, in the second Persian invasion, led by X…
Wu-wei | The Art of Letting Things Happen
Once upon a time, a novice farmer indulged himself in motivational videos. He became familiar with ideas like the importance of ‘effort,’ the ‘hustle culture,’ and ‘work hard, play hard.’ After binge-watching for days, he walked onto his farm, fired up, …
Catching Big Tuna | Wicked Tuna | National Geographic
Beginning of the season. We’ve got to try to try something and just prospect a little bit, see what’s where. Go back to one of my old spots here. This is my old chart plotter right here. This is from the old boat. It’s black and white. But all these dots …
Multiplying decimals word problems | Decimal multiplication | Grade 5 (TX TEKS) | Khan Academy
We are told James’ dog weighs 2.6 kg, and How’s dog weighs 3.4 times as much as James’ dog. How much does How’s dog weigh? Pause this video and try to figure that out. Well, How’s dog is 3.4 times the weight of James’s dog, which is 2.6. So we just have …
Worked example: limit comparison test | Series | AP Calculus BC | Khan Academy
So we’re given a series here and they say what series should we use in the limit comparison test. Let me underline that: the limit comparison test in order to determine whether ( S ) converges. So let’s just remind ourselves about the limit comparison te…