yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Cao Dai's History in Vietnam | The Story of God
[music playing] MORGAN FREEMAN: The Cao Dai religion, an unusual blend of eastern and western faiths, appears to be flourishing in Vietnam. Across the country, there are almost 400 temples. Followers worship openly. But it wasn’t always that way. I’ve be…
8 Animal Misconceptions Rundown
8) Let’s talk about Lemmings. When you hear the word “lemmings,” you might think of two things: this video game and some sort of small creature that suicidally leaps off cliffs when its population grows too large. In case you didn’t know, lemmings are rea…
Colonial Weaponry | Saints & Strangers
[Music] Radio weapons, push off, push off design. Mr. Bradford, fire! This is your standard, uh, standard matchlock musket. It was the earliest firing, uh, musket that there was. This over here is a match cord; both sides were normally kept lit in case …
10 QUICK Life Hacks To Save Money ASAP
What’s up, you guys? It’s Graham here! So, as some of you might already know, I am slightly obsessed with saving money. Okay, fine, that was a lie. I’m very much infatuated with saving money and trying to find the most creative ways to cut back without ev…
Who God is in Different Cultures | The Story of God
Who God is, is almost universally a great unknown. There are different manifestations of God: different statues, different icons, different sounds, smells, looks of God across cultures. God has a sound. To Navajo, God is a light, bright light to many peop…
Relation of null space to linear independence of columns
So I have the matrix A over here, and A has M rows and N columns. So we could call this an M by N matrix. What I want to do in this video is relate the linear independence or linear dependence of the column vectors of A to the null space of A. First of a…