yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Extended: Beaker Ball Balance Problem
This is the final installment of the beaker ball balance problem. So if you haven’t seen the first part, you should probably watch that now. The link is in the description. Now assuming you have seen it, you know that the balance tips towards the hanging…
How Khan Academy is Here to Help During COVID-19
Hi everyone, Sal here from Khan Academy. Uh, as I’m sure you’re aware, we are finding ourselves collectively, our planet, in a very interesting situation right now. A lot of unfortunate things are happening, and one of those unfortunate things is the pot…
Photographing the Real Life of Bees | National Geographic
These have been having a rough time for the last 10-12 years, and so National Geographic asked me, “Can you do a story about honeybees?” This is one of the most well-studied organisms, well-photographed organisms. Like, how am I supposed to drop in out of…
15 Signs You Are Financially Mature
You know, up until a certain point in life, money comes and money goes, and that’s about it. You just made a couple of purchases, you’ve got a stable place, a stable income, and things seem to settle. At this point, you start to be more financially mature…
Dividing 2-digit numbers by 2 digit-numbers | Grade 5 (TX TEKS) | Khan Academy
Let’s get a little bit of practice dividing with two-digit numbers. So, let’s start by trying to figure out what 92 divided by 23 is. Pause this video and see if you can figure that out. All right, now let’s work through this together. So, I am going to …
Unit 731: Japan’s Hidden Experiment
Four to six weeks. It’s a duration of time that you and I probably take for granted. What can really happen in that time? Nothing, right? Maybe that’s a big project at work, or maybe how long you’d spend learning integrals in calculus. In a different per…