yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
The Most Likely End to The Universe
Imagine living a life filled with happiness and pain, love and grief, ambition and despair. A life with parents, kids, grandkids, and ultimately the death of everyone, including yourself. And then it all happens again in the same way. You make the same ch…
Darren's Great Big Camera - Smarter Every Day 21
Today on Smarter Every Day, you’re gonna learn about big rockets and big cameras. Is it going now? Woah! [Rushing air] Woohoo! Yeah! Oh! Hey, it’s me, Destin. I’m at the U.S. Space & Rocket Center with my new friend Darren, who’s got a great big camer…
Simplifying hairy exponent expressions
So let’s get some practice simplifying hairy expressions that have exponents in them. We have a hairy expression right over here, and I encourage you to pause the video and see if you can rewrite this in a simpler way. All right, let’s work through this …
What Is Chemistry?
Hi, I’m Fiona McDonald and today we’re finding out what chemistry means to the average Australian. How would you describe chemistry? [Laughter] Um, like test tubes. I’m not a very big science fan, so I don’t really know any much about it. No idea. H, c…
Slowly into Secret Scotland | National Geographic
I believe that to truly slow down, you have to change the way you travel. Cycling allows me to travel more fluidly, to connect more deeply with my surroundings and, I hope, with the people who call this place home. I’m Michael George and I’m a National Ge…
How to NOT be LAZY anymore - The LAZINESS CURE
[Music] Let me ask you something. Do you come home from work just to sit on the couch and watch TV, or browse dank memes on your iPad? Maybe a friend will text you wanting to go out later, and you respond pretty exhausted, “Just gonna take it easy tonigh…