yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
If You Haven’t Solved These You’re Not as Smart as You Think You Are
If you’re so smart, why aren’t you rich? If you’re so smart, why aren’t you happy, fit, or fulfilled? You see, Alexus, the only real IQ test is if you get what you want in life. If you haven’t solved these, you’re not as smart as you think you are. Welco…
How to Get Rich Investing in Things You LOVE | Ask Mr. Wonderful Shark Tank's Kevin O'Leary
The question I’m always getting is: what about living? What about spending on things that you love? What about clothes? What about fashion? Do I have to just go Spartan? I can’t buy any of that stuff? Hi, Mr. Wonderful here, and welcome to another episod…
Why the Smart Money is Buying Alibaba Stock
So we’ve talked about the business. We’ve talked about the risks. Now I wanted to explore why our super investors are buying into Alibaba. So if you’ve been living under a rock, in Q1 Charlie Munger and Monish Pabrai were buying. Then in Q2, Monash Pabrai…
How Fear and Anxiety Drove Human Evolution | Nat Geo Explores
The heart races. Deep breaths are hard to find. Blood rushes through the body; that’s fear. Anxiety, scientifically, we tend to talk about fear as being a response to immediate threats, which is right there in front. First, anxiety is where there’s the po…
Charlie Munger: Why Net Worth EXPLODES After $100k
The hard part of the process for most people is the first $100,000. If you have a standing start at zero, getting together $100,000 is a long struggle. Getting your first $100,000 saved and invested will transform your life in ways you cannot yet imagine.…
Ivory-Like "Helmets" Are Driving These Birds to Extinction | National Geographic
Among homegirls in the world, the helmet of hornbill is the most unique species. The only hundred species who has a solid cusp features has been recognized for its ivory light quality. Well, we know that it just lives in the old ancient Sunday forests of …