yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Saving One of the Most Pristine Wetlands on Earth | National Geographic
The Aqua Bengal Delta, one of the most vibrant wetlands on the planet, could be in danger of disappearing. From deep in the my humble forest highlands of Angola flow the surface water that feeds the Cuiúto and Cubango rivers. These vital waterways, flowin…
Saving wisely: Emergency funds | Budgeting & saving | Financial Literacy | Khan Academy
In life, there are things that we expect, and there’s other things that we don’t expect. When we think about it from a finance point of view, the things that we might expect is, okay, we’re going to get a regular paycheck because of our work, and we’re go…
Steve Varsano talks about his experience in aviation
When you’re selling a jet for a company, that company is either moving up to a bigger, newer jet, or the company’s having problems and they’re selling the jet and they’re getting out of the business of operating their own corporate jet. If it’s the latte…
My Thoughts On The Stock Market Collapse
What’s up you guys? It’s Graham here. So, we gotta sit down for this one, even though I’m always sitting down, because we’re beginning to see some major changes taking place in the market. If you’ve opened up your computer and taken all through any amount…
Smoking is Awesome
The problem with smoking is that it’s kind of amazing – this is an irresponsible thing to say – but if we’re going to talk about it, we might as well do so honestly. Smoking creates a temporary problem and offers an instant solution. Once your brain is us…
Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy
Let’s think about the limit of the square root of 100 plus x minus the square root of x as x approaches infinity. I encourage you to pause this video and try to figure this out on your own. So, I’m assuming you’ve had a go at it. First, let’s just try to…