yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Brown v. Board of Education of Topeka | National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy, and today we’re learning more about Brown versus Board of Education of Topeka. Decided in 1954, Brown vs. Board was a landmark case that opened the door for desegregation and the modern civil rights movement. In Brown, t…
Ancient Predator Had a Killer Jaw | National Geographic
Curse of the buzzsaw came in swirling oceans. 275 million years ago lived one of the top predators of its time. If you look over, it was like a mutant creature from a horror movie. It looks like a shark with a terrifying buzzsaw in its jaw. Its bite was a…
2015 AP Calculus BC 2d | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Find the total distance traveled by the particle from time t equals zero to t equals one. Now let’s remember, they didn’t say find the total displacement; they said find the total distance traveled by the particle. So if something goes to the right by on…
Investors Said No, Now What?
Investor spends two minutes writing the email, and then later hears that you’ve pivoted your entire company because of it. Right? Not a huge signal of, uh, conviction. [Music] Hello, this is Michael with Harj and Brad. Welcome to Inside the Group Partne…
She Sails the Seas Without Maps or Compasses | Podcast | Overheard at National Geographic
Foreign, I like to think of the voyage and canoes as taking us back in time on the ocean. The Hua Kamalu is a navigator with the Polynesian Voyaging Society. I’ll often ask my crew, like, what do you think it would have been like to show up in Hawaii as t…
WORLD’S MOST AMAZING ARCHER in Slow Motion - Smarter Every Day 130
Hey it’s me Destin, welcome back to Smarter Every Day. I know when you think about archery you think about Nottingham, and one guy in particular, Robin Hood. But I’m gonna tell you about a guy today in my home town that might even be better than Robin Hoo…