yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Real Estate Investing 101: Top 5 Most PROFITABLE Renovations
What’s up, you guys? It’s Graham here. So, I’m here with this special guest. Some of you may have met him before, but those that haven’t should probably meet Kevin. We’re gonna be talking about the most profitable renovations that you can be doing. Anytim…
Definite integral of rational function | AP Calculus AB | Khan Academy
So we want to evaluate the definite integral from -1 to 2 from 1 to -2 of 16 - x³ over x³ dx. Now, at first, this might seem daunting. I have this rational expression; I have x’s in the numerator and x’s in the denominator, but we just have to remember w…
Chicago's Coolest Historical Spots | National Geographic
This vibrant city of art, culture, and industry is also a treasure trove of storied sites. While you’re enjoying public art at Millennium Park and savoring deep-dish pizza, make time to check out some of Chicago’s coolest historical spots. The Chicago Riv…
Curvature formula, part 3
So continuing on with where we were in the last video, um, we’re looking for this unit tangent vector function given the parameterization. So the specific example that I have is a function that parameterizes a circle with radius capital R, but I also kin…
HOT BOBAS! -- IMG! #34
Cacti are perpetual victims and kitten heart. It’s episode 34 of IMG! When these guys get busy, you get this. And when Adobe adds the force to Photoshop, you get Adobe WanKenobi. If other brands did the same we’d have Jedi - Do or do not; Sith puma; Hunt …
Introduction to factoring higher degree polynomials | Algebra 2 | Khan Academy
When we first learned algebra together, we started factoring polynomials, especially quadratics. We recognized that an expression like ( x^2 ) could be written as ( x \times x ). We also recognized that a polynomial like ( 3x^2 + 4x ) had the common facto…