yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Revolutionizing the Walking Cane: A Simple Design Gets a Hi-Tech Upgrade | Short Film Showcase
So all of us would have seen a person with vision impairment use the white cane to detect nearby obstacles on the ground. But this scan cannot detect anything from knee till head height, which frequently causes upper body or face injuries. So for a person…
Divergence intuition, part 2
Hey everyone! So, in the last video, I was talking about Divergence and kind of laying down the intuition that we need for it. You’re imagining a vector field as representing some kind of fluid flow where particles move according to the vector that they’r…
Representing ionic solids using particulate models | AP Chemistry | Khan Academy
In this video, we’re going to think about how ions will arrange themselves when they form solid crystals, when they form these lattice structures. So, just in very broad brush terms, let’s say that we have a bunch of this white cation and we have a bunch …
My Life Story
A question I get asked surprisingly often is, is Veritasium a real element? Nope, I made it up. Having fun When I was a kid, about 10 or 11 years old, I went to this Genghis Khan exhibit at a museum, and I didn’t know much about Genghis Khan except he was…
Nature's Incredible ROTATING MOTOR (It’s Electric!) - Smarter Every Day 300
Hey, it’s me, Destin. Welcome back to Smarter Every Day. This is the 300th episode, which is cool. Thank you so much for watching. I was on the internet the other day. I was just scrolling on my phone. I was probably wasting too much time. But I came acr…
Rare Footage: Wild Elephants “Mourn” Their Dead | National Geographic
I was pretty amazed by this scene when we came across it. You know, you do hear these stories about elephants showing this really keen interest in dead bodies of their species, and it’s just a very hard thing to observe. So, to find a body to begin with i…