yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told that quadrilateral A'B'C'D' is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A'B'C'D' right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by yourself before we do this together.

Just as a reminder, a rule for a transformation will look something like this: it's saying for every (x, y) in the pre-image, for example ABCD, what does it get mapped to in the image? And so it's going to tell us, well, how are these new coordinates based on x and y?

There are a couple of ways we could do that. We could just think about each of these points; for example, point A, and then what happens when it goes to A', and see if we can come up with a rule that works for all of them.

For example, point A is at the point (5, 6). Let's see the image when it goes to A'. It looks like it's at (-5, -6). So the x-coordinate stayed the same if I just look at this point, but the y-coordinate became the negative of it. That makes sense because when we do this reflection across the x-axis, it makes sense that our x-coordinate stays the same but that the y-coordinate, since it gets flipped down, becomes the negative; it becomes the opposite of what it was before.

So my candidate for this transformation for the rule here is that x stays the same and that y becomes the opposite. But we could do that with a few more points just to make sure that that holds up.

For example, we could look at point B in the pre-image, which is at (-6, 5). If this rule holds up when we do this reflection, B' should be at -6, making the y the opposite of this, so it should be at (-6, -5). If we go to (-6, -5), that is indeed where B' is.

You can validate the other points if you like, but this should just make intuitive sense: the x-coordinate stays the same, but the y-coordinate becomes the opposite.

More Articles

View All
Secant line with arbitrary point (with simplification) | AP Calculus AB | Khan Academy
A secant line intersects the graph of f of x, which is equal to x² + 5x, at two points with x-coordinates 3 and T, where T does not equal 3. What is the slope of the secant line in terms of T? Your answer must be fully expanded and simplified. And my apo…
Should all locks have keys? Phones, Castles, Encryption, and You.
Hello Internet. We need to talk about locks: the physical and the digital. In the physical world, locks aren’t as good as you think they are. The lock on your door stops worries, not burglars, as two minutes of searching will reveal. Spend more, get more…
Impact of mass on orbital speed | Study design | AP Statistics | Khan Academy
Let’s say that we’ve come up with a new pill that we think has a good chance of helping people with diabetes control their blood sugar. When someone has diabetes, their blood sugar is unusually high, which damages their body in a bunch of different ways. …
Nat Geo Photographers: How They Got Their Start | National Geographic
[Music] You know, we all start from somewhere. For me, I thought if I could just give a voice and a name to wildlife by using my camera, then that’s it. It was very important for me to immortalize stories, so I started capturing moments happening around m…
Jack Bogle: Beware of This One Mistake 99% of Investors Make
At least start off. I mean, I’d say start off an index fund period. And for five years, don’t do anything else and then look around and see what’s happened in the five years. See how it felt when the market dropped fifty percent. See how it felt when it c…
Watch One Family's Journey Through A Life-Changing Face Transplant | National Geographic
I love you. You just make sure you have to be dreams, okay? That’s ever. I love you. We’re just outside the door. You’re a great hand into the best. All right, okay? We invent the wrong McDonald’s house as a last week. Two years, there’s so many different…