yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Intro to determinant notation and computation | Matrices | Precalculus | Khan Academy


2m read
·Nov 10, 2024

In this video, we're going to talk about something called determinants of matrices. So I'll start just telling you the notation and how do you compute it, and then we'll think about ways that you can interpret it.

So let's give ourselves a 2 by 2 matrix here. So, and actually I'll give it in general terms. Let's say that this top left term here is A, and then this one here is B, the top right. The bottom left is C, and then let's call this bottom right D. And let me do that in a different color, so this is D right over here.

The determinant of this matrix. So let's actually let me just call this matrix, let's say that this is matrix A. So there's a bunch of ways to say, to call the determinant or have the notation for the determinant. We could write it like this; we could have these little, it looks like absolute value signs, but it really means determinant when you apply it to a matrix. So the determinant of matrix A, you can write it that way.

You could write it this way, the determinant of matrix A. You could write it that way, or you could write it this way, where you put these lines that look like big absolute value signs instead of the brackets when you describe the numbers. So you could also write it this way, just rewrite the whole matrix with those vertical bars next to it.

This is defined as, and we'll see how it's useful in the future, the top left times the bottom right, so A times D, minus the top right times the bottom left, B C. So another way to think about it, it is just these two, the product of these two, minus, so that's those two right over there, minus the product of these two right over here.

So let's just first, before we start to interpret this, get a little practice just computing a determinant. So let me give you a matrix. So let's say I have the matrix 1, negative 2, 3, and 5. Pause this video and see if you can compute the determinant of this matrix. Let's call this matrix B. I want you to figure out the determinant of matrix B. What is this going to be equal to?

All right, now let's do this together. So you're going to have the product of these two numbers. So we have 1 times 5 minus the product of these two numbers, which is 3 times negative 2. And that, of course, is going to be equal to 1 times 5 is 5, three times negative two is negative six, but we're subtracting a negative six. Five minus negative six is the same thing as five plus six, which is going to be equal to 11.

Now that we know how to compute a determinant, in the future video I will give you an interesting interpretation of the determinant.

More Articles

View All
It’s Over: The Housing Bubble Just Popped
Hey guys! So really quick, I want to address a previous controversy. In a previous video, I tore up this hundred dollar bill to illustrate how the FED removes money from the economy. I understand that this was upsetting to some viewers, but rest assured n…
International Human Rights | 1450 - Present | World History | Khan Academy
We hold these truths to be self-evident, that all men are created equal, that they are endowed by their creator with certain unalienable rights, that among these are life, liberty, and the pursuit of happiness. This is an excerpt of the US Declaration of …
Safari Live - Day 4 | National Geographic
Viewer discretion is advised. Well, it appears as if it’s blue skies with wonderful white clouds this afternoon and this is Safari Live, ready. Standing by. 5, 4, 3, 2, 1… you are live. You are [Music] live. Good afternoon everyone and welcome to Safari L…
Jim Crow part 4 | The Gilded Age (1865-1898) | US History | Khan Academy
So we’ve been talking about the system of Jim Crow segregation. In the last video, we left off in 1876. In 1876, there was a contested presidential election between a Republican candidate named Rutherford B. Hayes and a Democratic candidate named Samuel J…
Multiplying & dividing rational expressions: monomials | High School Math | Khan Academy
So up here we are multiplying two rational expressions, and here we’re dividing one rational expression by another one. What I encourage you to do is pause these videos and think about what these become when you multiply them out. Maybe you simplify it a …
Partial derivatives of vector fields, component by component
Let’s continue thinking about partial derivatives of vector fields. This is one of those things that’s pretty good practice for some important concepts coming up in multivariable calculus, and it’s also just good to sit down and take a complicated thing a…