yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Intro to determinant notation and computation | Matrices | Precalculus | Khan Academy


2m read
·Nov 10, 2024

In this video, we're going to talk about something called determinants of matrices. So I'll start just telling you the notation and how do you compute it, and then we'll think about ways that you can interpret it.

So let's give ourselves a 2 by 2 matrix here. So, and actually I'll give it in general terms. Let's say that this top left term here is A, and then this one here is B, the top right. The bottom left is C, and then let's call this bottom right D. And let me do that in a different color, so this is D right over here.

The determinant of this matrix. So let's actually let me just call this matrix, let's say that this is matrix A. So there's a bunch of ways to say, to call the determinant or have the notation for the determinant. We could write it like this; we could have these little, it looks like absolute value signs, but it really means determinant when you apply it to a matrix. So the determinant of matrix A, you can write it that way.

You could write it this way, the determinant of matrix A. You could write it that way, or you could write it this way, where you put these lines that look like big absolute value signs instead of the brackets when you describe the numbers. So you could also write it this way, just rewrite the whole matrix with those vertical bars next to it.

This is defined as, and we'll see how it's useful in the future, the top left times the bottom right, so A times D, minus the top right times the bottom left, B C. So another way to think about it, it is just these two, the product of these two, minus, so that's those two right over there, minus the product of these two right over here.

So let's just first, before we start to interpret this, get a little practice just computing a determinant. So let me give you a matrix. So let's say I have the matrix 1, negative 2, 3, and 5. Pause this video and see if you can compute the determinant of this matrix. Let's call this matrix B. I want you to figure out the determinant of matrix B. What is this going to be equal to?

All right, now let's do this together. So you're going to have the product of these two numbers. So we have 1 times 5 minus the product of these two numbers, which is 3 times negative 2. And that, of course, is going to be equal to 1 times 5 is 5, three times negative two is negative six, but we're subtracting a negative six. Five minus negative six is the same thing as five plus six, which is going to be equal to 11.

Now that we know how to compute a determinant, in the future video I will give you an interesting interpretation of the determinant.

More Articles

View All
BUBBLE FAIL !! Best Images of the Week #37
Shooting a watermelon off your brother’s head and an inverted sandwich. I’m a little sick today, but the best medicine is episode 37 of IMG! Why is this cat so sad? Does he not know that unicorn bicycles exist? The only thing more spectacular might be th…
Examples identifying Type I and Type II errors | AP Statistics | Khan Academy
We are told a large nationwide poll recently showed an unemployment rate of nine percent in the United States. The mayor of a local town wonders if this national result holds true for her town. So, she plans on taking a sample of her residents to see if t…
Vector fields, introduction | Multivariable calculus | Khan Academy
Hello everyone! So, in this video, I’m going to introduce Vector Fields. Now, these are concepts that come up all the time in multivariable calculus, and that’s probably because they come up all the time in physics. You know, it comes up with fluid flow,…
How Many Moons Could Earth Handle? #kurzgesagt #shorts
How many moons could Earth handle? The main factor is space. Any moon needs a clean orbit and we have to take two things into account. One, it can’t be too far; otherwise, it won’t follow a stable orbit around us. Two, it can’t be too close either, or the…
Big Data by the Numbers | Explorer
I’m Richard Bacon. Let’s talk about surveillance. But let’s do it quietly because they’re probably listening. That thing in your pocket that you call a smartphone, it’s a tracking device that just happens to make calls. Digital tracking has become a part …
Congruent shapes and transformations
We’re told Cassandra was curious if triangle ABC and triangle GFE were congruent, so he tried to map one figure onto the other using a rotation. So, let’s see. This is triangle ABC, and it looks like at first he rotates triangle ABC about point C to get i…