yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics using structure | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

So let's try to find the solutions to this equation right over here. We have the quantity (2x - 3) squared, and that is equal to (4x - 6). I encourage you to pause the video and give it a shot. I'll give you a little bit of a hint: You could do this in the traditional way of expanding this out and then turning it into kind of a classic quadratic form, but there might be a faster or a simpler way to do this if you really pay attention to the structure of both sides of this equation.

Well, let's look at this. We have (2x - 3) squared on the left-hand side. On the right-hand side, we have (4x - 6). Well, (4x - 6) that's just (2 \times (2x - 3)). Let me be clear there. So this is the same thing as (2x - 3) squared is equal to (4x - 6). If I factor out a two, that's (2 \times (2x - 3)).

So this is really interesting: we have something squared is equal to (2) times that something. So if we can solve for the something—let me be very clear here—so the stuff in blue squared is equal to two times the stuff in blue. If we can solve for what the stuff in blue could be equal to, then we could solve for (x) and I'll show you that right now.

So let's say—let's just replace (2x - 3)—we'll do a little bit of a substitution. Let's replace that with (P). So let's say that (P) is equal to (2x - 3). Well then this equation simplifies quite nicely. The left-hand side becomes (P^2), and (P^2) is equal to (2 \times 2 \times P) because once again, (2x - 3) is (P), (2 \times P).

Now we just have to solve for (P), and I'll switch to just one color now. So we can write this as—if we subtract (2P) from both sides, we get (P^2 - 2P) is equal to zero. We can factor out a (P), so we get (P(P - 2)) is equal to zero.

And we've seen this show multiple times. If I have the product of two things and they equal to zero, at least one of them needs to be equal to zero. So either (P) is equal to zero or (P - 2) is equal to zero. Well, if (P - 2) is equal to zero, then that means (P) is equal to (2). So either (P = 0) or (P = 2).

Well, we're not quite done yet because we wanted to solve for (x), not for (P). But luckily, we know that (2x - 3) is equal to (P). So now we could say either: either (2x - 3) is going to be equal to this (P) value, which is equal to zero, or (2x - 3) is going to be equal to this (P) value, which is equal to two.

And so this is pretty straightforward to solve. Add three to both sides, you get (2x) is equal to three. Divide both sides by two and we get (x) is equal to (\frac{3}{2}).

Or over here, if we add three to both sides, we get (2x) is equal to five. Divide both sides by two and you get (x) is equal to (\frac{5}{2}).

So these are the possible solutions, and this is pretty neat. This one right over here you could almost do this in your head. It was nice and simple. While if you were to expand this out and then subtract this, it would have been a much more complex set of operations that you would have done. You still would have hopefully gotten to the right answer, but it would have just taken a lot more steps.

But here we could appreciate some patterns that we saw in our equations, namely we have this thing being squared and then we have two times that same thing (2 \times (2x - 3)).

More Articles

View All
Things to know before buying a home | Housing | Financial Literacy | Khan Academy
Let’s say you’re interested in buying a home, and you have found the house that you want, and it costs $300,000. Let’s think about whether you are ready to purchase that and other things that you might have to consider. A lot of folks realize that if you…
Complex numbers with the same modulus (absolute value)
[Instructor] We are asked, which of these complex numbers has a modulus of 13? And just as a bit of a hint, when we’re talking about the modulus of a complex number, we’re really just talking about its absolute value. Or if we were to plot it in the compl…
How a young Bill Clinton made waves during his presidential campaign | Rewind the '90s
(Crowd cheering) NARRATOR: It’s 1992, President George H.W. Bush is up for re-election. With a squeaky clean image, he’s had some of the highest approval ratings of any president. Then, a political bad boy joins the race. (Jazzy saxophone music) AJ BENZ…
Behavior and Belief
Hey, Mind Field! Vanessa here. Just kidding. My name is actually Michael. That part when I said that I was Vanessa… that was a lie. So you’re welcome. Humans love lies. More precisely, we love things that aren’t entirely true– because we have to. It’s oft…
Constrained optimization introduction
Hey everyone! So, in the next couple videos, I’m going to be talking about a different sort of optimization problem: something called a constrained optimization problem. An example of this is something where you might see — you might be asked to maximize…
10 STOIC LESSONS TO HANDLE DISRESPECT (MUST WATCH) | STOICISM
STOICISM INSIGHTS Presents 10 STOIC LESSONS TO HANDLE DISRESPECT How do you deal with DISRESPECT? DISRESPECT is a common challenge that we all face in life, and it can be very upsetting and frustrating. But what if we could learn from the ANCIENT PHILOSO…