yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving quadratics using structure | Mathematics II | High School Math | Khan Academy


3m read
·Nov 11, 2024

So let's try to find the solutions to this equation right over here. We have the quantity (2x - 3) squared, and that is equal to (4x - 6). I encourage you to pause the video and give it a shot. I'll give you a little bit of a hint: You could do this in the traditional way of expanding this out and then turning it into kind of a classic quadratic form, but there might be a faster or a simpler way to do this if you really pay attention to the structure of both sides of this equation.

Well, let's look at this. We have (2x - 3) squared on the left-hand side. On the right-hand side, we have (4x - 6). Well, (4x - 6) that's just (2 \times (2x - 3)). Let me be clear there. So this is the same thing as (2x - 3) squared is equal to (4x - 6). If I factor out a two, that's (2 \times (2x - 3)).

So this is really interesting: we have something squared is equal to (2) times that something. So if we can solve for the something—let me be very clear here—so the stuff in blue squared is equal to two times the stuff in blue. If we can solve for what the stuff in blue could be equal to, then we could solve for (x) and I'll show you that right now.

So let's say—let's just replace (2x - 3)—we'll do a little bit of a substitution. Let's replace that with (P). So let's say that (P) is equal to (2x - 3). Well then this equation simplifies quite nicely. The left-hand side becomes (P^2), and (P^2) is equal to (2 \times 2 \times P) because once again, (2x - 3) is (P), (2 \times P).

Now we just have to solve for (P), and I'll switch to just one color now. So we can write this as—if we subtract (2P) from both sides, we get (P^2 - 2P) is equal to zero. We can factor out a (P), so we get (P(P - 2)) is equal to zero.

And we've seen this show multiple times. If I have the product of two things and they equal to zero, at least one of them needs to be equal to zero. So either (P) is equal to zero or (P - 2) is equal to zero. Well, if (P - 2) is equal to zero, then that means (P) is equal to (2). So either (P = 0) or (P = 2).

Well, we're not quite done yet because we wanted to solve for (x), not for (P). But luckily, we know that (2x - 3) is equal to (P). So now we could say either: either (2x - 3) is going to be equal to this (P) value, which is equal to zero, or (2x - 3) is going to be equal to this (P) value, which is equal to two.

And so this is pretty straightforward to solve. Add three to both sides, you get (2x) is equal to three. Divide both sides by two and we get (x) is equal to (\frac{3}{2}).

Or over here, if we add three to both sides, we get (2x) is equal to five. Divide both sides by two and you get (x) is equal to (\frac{5}{2}).

So these are the possible solutions, and this is pretty neat. This one right over here you could almost do this in your head. It was nice and simple. While if you were to expand this out and then subtract this, it would have been a much more complex set of operations that you would have done. You still would have hopefully gotten to the right answer, but it would have just taken a lot more steps.

But here we could appreciate some patterns that we saw in our equations, namely we have this thing being squared and then we have two times that same thing (2 \times (2x - 3)).

More Articles

View All
What Does Freedom Mean to You? | The Story of Us
Freedom is different things to different people. What do you think freedom is? [Music] Dear Slaw, Paul de Leeuw, betta em, but I feel of its own oxygen. Freedom, I don’t know who was attempting bullets. Na la libertad me is so I’ll see. Ali effective a …
Who are the Water Mafia | Parched
[busy street sounds] [rhythmic music playing] AMAN SETHI: Everyone buys water from the water mafia– the rich, the poor, the middle class. That’s because Delhi and its surroundings have about 24 million people. And anywhere between 30% to 40% don’t have a…
How to communicate with Khanmigo | Introducing Khanmigo | Khanmigo for students | Khan Academy
What we’re going to do in this video is talk about how you can use Kigo if you need help or if you are stuck on something. So, let’s say you’re having trouble in your math class. You might want to go to the activity “Tutor Me Math and Science” because we…
Is This the End of Cathie Wood? | ARKK Fund Collapsing
One of the new stars in the investment world over the past few years has been Kathy Wood. She has had a successful and established career on Wall Street but really became a household name relatively recently with the company she founded, Arkhanvest, and i…
Article V of the Constitution | US government and civics | Khan Academy
Hey, this is Kim from Khan Academy, and today I’m learning about Article 5 of the U.S. Constitution, which describes the Constitution’s amendment process. To learn more about Article 5, I talked to two experts: Professor Michael Rappaport, who is the Darl…
Why AI Hasn’t Blown Our Minds…Yet
Hypothetically, if AI is a bust in a bunch of different ways but it works extremely well fixing customer service, that’s still massive. It’s going to change our world; massive impact. Hello, this is Dalton plus Michael and today we’re going to talk about…