yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ray Jayawardhana: Waiting for a Supernova | Big Think


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

Neutrinos are a type of elementary particle. In fact, they're the most common type of matter particle, but they don't interact very much with the environment. That means they're hard to pin down. So, as we're sitting here, trillions of these particles are zipping through our bodies, and there's nothing we can do about it.

And there's a small chance—maybe a 25 percent chance—that over the course of a person's lifetime, there'll be one interaction of one neutrino with an atom in your body. But luckily, these particles don't cause any harm, and they don't leave any trace as they pass through our bodies, right through the Earth and vast distances across the universe.

So they really are ghostly elusive bits of matter that are produced often when nuclear reactions happen—for example, in the core of the Sun or in a nuclear reactor on Earth, as well as when a massive star explodes at the end of its lifetime, as a gigantic supernova explosion.

Back in 1987, this massive star exploded at the end of its life in a satellite galaxy of the Milky Way. When that happened, astronomers—starting with a couple of observers based in Chile—happened to notice this star suddenly brighten pretty much overnight. They realized that something was going on, and indeed it continued to brighten and was quickly recognized as a supernova explosion—the nearest one that we know about in some 400 years—pretty much since the invention of the telescope.

So that made it a big deal. And yet, it was not quite in our galaxy, and our neutrino detectors back in 1987 were just sensitive enough that three different neutrino detectors around the world registered a total of a couple of dozen particles. So just two dozen events that were recorded—two dozen neutrinos coming from this massive explosion—really allowed us, for the first time, to confirm the physics of what happens when a star explodes at the end of its life.

Because these particles don't interact with much, they can escape from the site of mayhem—basically from the core of the explosion, unhindered, and reach us, and therefore confirm directly what's going on there. So the energies of the neutrinos that were detected, for example, were consistent with the predictions that astrophysicists had for supernova explosions.

So that allowed them to sort of confirm some basic overall facts about what a supernova explosion entails. Now when a massive star explodes at the end of its life, it could either collapse into a black hole, collapse all the way into a black hole, or it could halt at what we call a neutron star—a ball of neutrons—and that's it, that's the end product.

And if the neutrino flux fades away slowly, that suggests that it turned into a neutron star. Whereas if it cuts off very sharply, that would tell us that the star collapsed all the way into a black hole.

Now neutrino physicists are ready and waiting, hoping that one of these days a supernova would explode somewhere in our galaxy, the Milky Way. Even if it's on the far side of the Milky Way, and we might not see it because the stellar dust obscures the visible light, the neutrinos would still get through. So the neutrino detectors would observe that a supernova has occurred even if our optical telescopes don't.

More Articles

View All
Why Time Goes Faster As You Get Older
Close your eyes. Remember yourself as a child, playing with your friends, stressing out about spelling tests at school, coming home to snacks on the table, and asking for help with your homework. What do you feel? Maybe you’re suspended in a time when thi…
The Most Important Things That Make or Break a Good Life
Hello Elixers and welcome back to our channel! This video is for everybody, regardless of where you are in your life, sort of a back to basics. You know, it’s good to have a refresher once in a while. We know you’ll love this one. Welcome to Alux! Now, …
Spinning Sphere of Molten Sodium
Thermometry is kind of a key safety diagnostic to make sure that we’re well controlled. Thermometry, thermometry! What if it gets too high? Here in trouble! Or sodium expands when it heats, the vessel has a certain volume. There’s a temperature above whic…
Example finding distance with Pythagorean theorem
We are asked what is the distance between the following points, so pause this video and see if you can figure it out. Well, there are multiple ways to think about it. The way I think about it is really to try to draw a right triangle where these points, w…
Monopsony employers and minimum wages
In this video, we’re going to review what we’ve already learned about monopsony employers that we’ve covered in a previous video. But then we’re going to add a twist of adding a minimum wage and see what happens. And it’s actually interesting; it’s actual…
Gordon Makes Hominy | Gordon Ramsay: Uncharted
It’s the day before the Big Cook, and I’ve got one last very important stop. On the border of the Great Smoky Mountains is the national park that is inhabited by the Cherokee Indians. I’ve heard that there is a Cherokee dish that I need to taste to believ…