yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using probability to make fair decisions


2m read
·Nov 10, 2024

We're told that Roberto and Jocelyn decide to roll a pair of fair six-sided dice to determine who has to dust their apartment. If the sum is seven, then Roberto will dust. If the sum is 10 or 11, then Jocelyn will dust. If the sum is anything else, they'll roll again. Is this a fair way to decide who dusts? Why or why not? So pause this video and see if you can figure this out before we do it together.

All right, now let's do this together. So what I want to do is make a table that shows all of the different scenarios for rolling two fair six-sided dice. So let me make columns for roll one. So that is: you get a one, this is when you get a two, this is when you get a three, this is when you get a four, this is when you get a five, and then this is when you get a six.

And then here, let's do it for the other die. So this is when you get a one, this is when you get a two, this is when you get a three, this is when you get a four, this is when you get a five, and then this is when you get a six. So one way to think about it is this: this is roll one, or let me write it this way: die one and die two. This could be a one, a two, a three, a four, a five, or a six, and this could be a one, a two, a three, a four, a five, or six.

Now what we could do is fill in these 36 squares to figure out what the sum is. Actually, let me just do that, and I'll try to do it really fast. One plus one is two, so it's three, four, five, six, seven. This is three, four, five, six, seven, eight. This is four, five, six, seven, eight, nine. This is five, six, seven, eight, nine, ten. This is six, seven, eight, nine, ten, eleven. Last but not least, seven, eight, nine, ten, eleven, and twelve. Took a little less time than I suspected.

All right, let's think about this scenario. If the sum is 7, then Roberto will dust. So where is the sum 7? So we have that ones twice, three times, four, five, six. So six out of... so six of these outcomes result in a sum of 7.

And how many possible equally likely outcomes are there? Well, there are six times six equally possible outcomes, or 36. So six out of the 36, or this is another way of saying there's a one-sixth probability that Roberto will dust.

And then let's think about the 10s or 11s. If the sum is 10 or 11, then Jocelyn will dust. So 10 or 11. So we have one, two, three, four, five. So this is only happening five out of the 36 times.

So in any given roll, it's a higher probability that Roberto will dust than Jocelyn will. And of course, if neither of these happen, they're going to roll again. But on that second roll, there's a higher probability that Roberto will dust than Jocelyn will dust.

So in general, this is not fair. There's a higher probability that Roberto dusts. So this is our choice.

More Articles

View All
YOU Own the Moon. And Mars. And Venus. #kurzgesagt #shorts
You own the moon and Mars and everything else in space, really. Call a space lawyer; they’ll tell you about the Outer Space Treaty. It was born from the Cold War when countries were racing to space. It forbids any of them from taking over celestial bodies…
The Physics Of Basketball | StarTalk
We’re exploring the physics of basketball, featuring my interview with NBA All-Star Kareem Abdul-Jabbar. Check it out. A rebound—in basketball, you have to get a sense of how the thing is going to bounce before the thing makes that bounce so that you can…
Safari Live - Day 384 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Well, we couldn’t have asked for a better way to start our Sunday than the brand-new “Oh balls of fluff” for the Inkuhuma p…
Finding equivalent ratios in similar quadrilaterals | Grade 8 (TX) | Khan Academy
We are told Lucas dilated quadrilateral ABCD to create quadrilateral WXYZ. So it looks like he rotated and zoomed in or made it or expanded it to get this other quadrilateral. The fact that we used these types of transformations like a dilation and it loo…
I watched the Eclipse in Argentina - Smarter Every Day 221
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I am in the globe museum in Vienna, Austria, and going to show you something really neat. This is called a Lunarium. A Lunarium is a really interesting device used to calculate the position of solar…
How People Disappear
Hey, Vsauce. Michael here. A few years ago in Minneapolis, an angry dad stormed into the retail store Target. His daughter, a high schooler, had been receiving coupons in the mail from the store for things like cribs and diapers. Was Target encouraging hi…