yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using probability to make fair decisions


2m read
·Nov 10, 2024

We're told that Roberto and Jocelyn decide to roll a pair of fair six-sided dice to determine who has to dust their apartment. If the sum is seven, then Roberto will dust. If the sum is 10 or 11, then Jocelyn will dust. If the sum is anything else, they'll roll again. Is this a fair way to decide who dusts? Why or why not? So pause this video and see if you can figure this out before we do it together.

All right, now let's do this together. So what I want to do is make a table that shows all of the different scenarios for rolling two fair six-sided dice. So let me make columns for roll one. So that is: you get a one, this is when you get a two, this is when you get a three, this is when you get a four, this is when you get a five, and then this is when you get a six.

And then here, let's do it for the other die. So this is when you get a one, this is when you get a two, this is when you get a three, this is when you get a four, this is when you get a five, and then this is when you get a six. So one way to think about it is this: this is roll one, or let me write it this way: die one and die two. This could be a one, a two, a three, a four, a five, or a six, and this could be a one, a two, a three, a four, a five, or six.

Now what we could do is fill in these 36 squares to figure out what the sum is. Actually, let me just do that, and I'll try to do it really fast. One plus one is two, so it's three, four, five, six, seven. This is three, four, five, six, seven, eight. This is four, five, six, seven, eight, nine. This is five, six, seven, eight, nine, ten. This is six, seven, eight, nine, ten, eleven. Last but not least, seven, eight, nine, ten, eleven, and twelve. Took a little less time than I suspected.

All right, let's think about this scenario. If the sum is 7, then Roberto will dust. So where is the sum 7? So we have that ones twice, three times, four, five, six. So six out of... so six of these outcomes result in a sum of 7.

And how many possible equally likely outcomes are there? Well, there are six times six equally possible outcomes, or 36. So six out of the 36, or this is another way of saying there's a one-sixth probability that Roberto will dust.

And then let's think about the 10s or 11s. If the sum is 10 or 11, then Jocelyn will dust. So 10 or 11. So we have one, two, three, four, five. So this is only happening five out of the 36 times.

So in any given roll, it's a higher probability that Roberto will dust than Jocelyn will. And of course, if neither of these happen, they're going to roll again. But on that second roll, there's a higher probability that Roberto will dust than Jocelyn will dust.

So in general, this is not fair. There's a higher probability that Roberto dusts. So this is our choice.

More Articles

View All
The SECRET To Living A MILLIONAIRE LIFESTYLE Explained!|Kevin O'Leary
Welcome to another episode of Ask Mr. Wonderful! As always, it starts with a question, or sometimes questions. This week, I mean, I love this! This is from Cindy Rose. “Hi Mr. Wonderful! I got into your channel recently and I’ve watched the last seven ep…
15 Pieces Of Advice Only Weak People Give You
Hello elixirs and welcome back. At some point in life, we all need advice to solve one problem or the other, and we might need it for us to take a bold step, probably on our career path or things that mean more to us. In today’s video, we’ll be checking …
Why more people started flying in private jets
What do you think COVID did for the private aviation industry? Because I’ll be honest, when that whole thing was going on, that was kind of my first introduction to… staring. The charter travel got very crazy. Even though prices were quite crazy at that t…
How to Help Small Businesses During COVID-19 | Ask Mr. Wonderful #22 Kevin O'Leary & Maria Sharapova
I Mr. Wonderful here, and welcome to another episode of Ask Mr. Wonderful. Now, you know what I love to do time to time is to invite a guest onto the show to help me answer all of your questions. I’m always amazed by how many questions we get and where we…
Worked examples: Summation notation | Accumulation and Riemann sums | AP Calculus AB | Khan Academy
We’re told to consider the sum 2 plus 5 plus 8 plus 11. Which expression is equal to the sum above? And they tell us to choose all answers that apply. So, like always, pause the video and see if you can work through this on your own. When you look at the…
Banned From Investing
What’s up, Graham? It’s guys here. So I had another video that was scheduled to post today, but that could wait because we gotta talk about what’s happening throughout the entire stock and cryptocurrency market, and the likelihood of seeing some pretty bi…