yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using probability to make fair decisions


2m read
·Nov 10, 2024

We're told that Roberto and Jocelyn decide to roll a pair of fair six-sided dice to determine who has to dust their apartment. If the sum is seven, then Roberto will dust. If the sum is 10 or 11, then Jocelyn will dust. If the sum is anything else, they'll roll again. Is this a fair way to decide who dusts? Why or why not? So pause this video and see if you can figure this out before we do it together.

All right, now let's do this together. So what I want to do is make a table that shows all of the different scenarios for rolling two fair six-sided dice. So let me make columns for roll one. So that is: you get a one, this is when you get a two, this is when you get a three, this is when you get a four, this is when you get a five, and then this is when you get a six.

And then here, let's do it for the other die. So this is when you get a one, this is when you get a two, this is when you get a three, this is when you get a four, this is when you get a five, and then this is when you get a six. So one way to think about it is this: this is roll one, or let me write it this way: die one and die two. This could be a one, a two, a three, a four, a five, or a six, and this could be a one, a two, a three, a four, a five, or six.

Now what we could do is fill in these 36 squares to figure out what the sum is. Actually, let me just do that, and I'll try to do it really fast. One plus one is two, so it's three, four, five, six, seven. This is three, four, five, six, seven, eight. This is four, five, six, seven, eight, nine. This is five, six, seven, eight, nine, ten. This is six, seven, eight, nine, ten, eleven. Last but not least, seven, eight, nine, ten, eleven, and twelve. Took a little less time than I suspected.

All right, let's think about this scenario. If the sum is 7, then Roberto will dust. So where is the sum 7? So we have that ones twice, three times, four, five, six. So six out of... so six of these outcomes result in a sum of 7.

And how many possible equally likely outcomes are there? Well, there are six times six equally possible outcomes, or 36. So six out of the 36, or this is another way of saying there's a one-sixth probability that Roberto will dust.

And then let's think about the 10s or 11s. If the sum is 10 or 11, then Jocelyn will dust. So 10 or 11. So we have one, two, three, four, five. So this is only happening five out of the 36 times.

So in any given roll, it's a higher probability that Roberto will dust than Jocelyn will. And of course, if neither of these happen, they're going to roll again. But on that second roll, there's a higher probability that Roberto will dust than Jocelyn will dust.

So in general, this is not fair. There's a higher probability that Roberto dusts. So this is our choice.

More Articles

View All
Hunting for Blood Antiquities | Explorer
I want to witness a sale of these looted smuggled antiquities because that’s the only way I can understand where the stuff’s coming from, how it’s getting out, what the kind of market is for this stuff. If I told them I was a journalist, they’d probably t…
The Gray Rock Method | Beat ‘Toxic People’ with Serenity
Some people really get in our hair. Moreover, there are individuals that, for some reason, take delight in getting emotional reactions out of others. When they succeed, they win, and their ability to hurt gives them a sense of power. Whether we call them …
The Team Leader Steps Down | Explorer
Hi. On a remote peak in Myanmar, a team of elite climbers is unraveling just as they are poised to attempt the summit. “But what I’m hearing from you guys is that you don’t trust me on the rope.” “We’re just worried about the safety of the team. There’l…
Ecology introduction | Ecology | Khan Academy
We’re now going to start looking at ecology, which is just a study of how life interacts with other life or how living things interact with each other and their environment. So you could think of it as, well, how is life interacting with living things? S…
At the Intersection of AI, Governments, and Google - Tim Hwang
All right everyone, so today we have Tim Wong, and we are live from Tim Wong’s apartment. I’m Francisco. Alright man, so I think the easiest way to do this was just to introduce yourself. Okay, cool. So, well, thanks for having me on the show, Craig. My …
The Video Chat That Existed In The 1870s | How Sci-fi Inspired Science
You hear your phone. You look down, and what do you see? Incoming video call. After you hit the client, think about how commonplace video chats have become. For a long time, the idea of seeing someone from across the world was only in science fiction. So,…