yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Impact of mass on orbital speed | AP Physics 1 | Khan Academy


3m read
·Nov 11, 2024

A satellite of mass lowercase m orbits Earth at a radius capital R and speed v naught, as shown below. So, this has mass lowercase m. An aerospace engineer decides to launch a second satellite that is double the mass into the same orbit. So, the same orbit, so this radius is still going to be capital R, and so this satellite, the second satellite, has a mass of 2m. The mass of Earth is capital M, so this is Earth right here.

What is the speed lowercase v of the heavier satellite in terms of v naught and speed? You can use the magnitude of velocity, and so that's why it's a lowercase v without a vector symbol on it. And so, what we're trying to figure out is the magnitude of its velocity in order to stay in orbit. What is lowercase v going to be equal to? So, pause this video and see if you can figure it out on your own.

All right, so to tackle this, remember the whole reason why something stays in orbit instead of just going in a straight line through space is because there is going to be a constant magnitude centripetal acceleration towards the center of Earth. It keeps turning, I guess you could say, the satellite in this circular path.

We've seen from other videos that the magnitude of our centripetal acceleration is going to be equal to the magnitude of our velocity. I'll just use this first satellite. So, the magnitude of its velocity squared divided by our radius, which in this case is capital R.

But what determines our centripetal acceleration? Well, we can explore Newton's law of gravitation there. So, if we think about the magnitude of the force of gravity, well, that's going to be equal to G, which is the universal gravitational constant, times the product of the two masses that have the force between them.

So, the product of the mass of Earth, capital M, and the mass of this satellite—I’ll just focus on this satellite for now—divided by the distance between their center of masses squared. In this case, that is capital R squared.

If you wanted the centripetal acceleration, you would just divide force by mass. Remember, from Newton's second law, we know that f is equal to ma. And so, if we're talking about centripetal acceleration, it's the force of gravity that is causing it.

If we want to solve for centripetal acceleration, you just divide both sides of these by lowercase m, the mass of the satellite. Our centripetal acceleration here, if you divide our force of gravity by lowercase m, is going to be the universal gravitational constant times the mass of Earth divided by the radius squared.

We could then take this and substitute it back over here and solve for the magnitude of our velocity. So, what you're going to have is the universal gravitational constant times the mass of Earth divided by the radius squared is equal to the magnitude of our velocity, or the speed squared divided by capital R.

Now you can multiply both sides by R, and I'll swap sides as well. You're going to get v naught squared is going to be equal to capital G times capital M over R. Or, if you take the square root of both sides, you get v naught is equal to the square root of the universal gravitational constant times the mass of Earth divided by the distance between the center of masses.

Now, what's interesting here is we see the speed we need in order to maintain this orbit in no way is it a function of the mass of the satellite. I don't see a lowercase m anywhere in this expression on the right-hand side. Since this is independent of the mass of the thing that is in orbit, if you double the mass—if you go from lowercase m to 2 times lowercase m—it does not change the needed orbital speed.

So, what is the speed lowercase v of the heavier satellite in terms of v naught? It's going to be the same thing. We could write lowercase v is going to be equal to v naught. It doesn't matter what you do to the mass here; you're going to need the same orbital speed.

More Articles

View All
Revealing The INSANE Perks of The $10 Million Dollar Credit Card
What’s up, guys? It’s Graham here. So, two years ago, I did a thing. I was able to obtain what many people would consider to be the holy grail of credit cards, one that very few people even know exists. If you think that’s a weird thing to say, that’s bec…
3 books to read to become successful!
Three standout books that really have an impression on me. One by Tony Robbins, it’s called Life. It’s such an easy-to-read book about every single kind of advancement in the medical field. Easy to understand everything for longevity, anti-aging, how to …
Safari Live - Day 214 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello, hello, and welcome to your live Safari experience that happens every day, twice a day, except for this morning, wher…
Taking a step back (what happened)
Hey, so right off the bat I want to acknowledge that this is going to be a much different pace than my usual videos because I’m not scripting it out word for word. I’m not trying to find the perfect way to say every sentence. I’m not playing to the YouTub…
Introduction to real gases | Intermolecular forces and properties | AP Chemistry | Khan Academy
In several other videos, we have talked about the ideal gas law, which tells us that pressure times volume is going to be equal to the number of moles times the ideal gas constant times the temperature measured in Kelvin. Now, in all of our studies of the…
The Problem With Financial Minimalism
What’s up guys, it’s Graham here. So lately, I’ve noticed a big push towards the concept of financial minimalism. For those of you that are not aware, this is the concept in which you cut out every expense in your life that does not add to your overall e…