yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Impact of mass on orbital speed | AP Physics 1 | Khan Academy


3m read
·Nov 11, 2024

A satellite of mass lowercase m orbits Earth at a radius capital R and speed v naught, as shown below. So, this has mass lowercase m. An aerospace engineer decides to launch a second satellite that is double the mass into the same orbit. So, the same orbit, so this radius is still going to be capital R, and so this satellite, the second satellite, has a mass of 2m. The mass of Earth is capital M, so this is Earth right here.

What is the speed lowercase v of the heavier satellite in terms of v naught and speed? You can use the magnitude of velocity, and so that's why it's a lowercase v without a vector symbol on it. And so, what we're trying to figure out is the magnitude of its velocity in order to stay in orbit. What is lowercase v going to be equal to? So, pause this video and see if you can figure it out on your own.

All right, so to tackle this, remember the whole reason why something stays in orbit instead of just going in a straight line through space is because there is going to be a constant magnitude centripetal acceleration towards the center of Earth. It keeps turning, I guess you could say, the satellite in this circular path.

We've seen from other videos that the magnitude of our centripetal acceleration is going to be equal to the magnitude of our velocity. I'll just use this first satellite. So, the magnitude of its velocity squared divided by our radius, which in this case is capital R.

But what determines our centripetal acceleration? Well, we can explore Newton's law of gravitation there. So, if we think about the magnitude of the force of gravity, well, that's going to be equal to G, which is the universal gravitational constant, times the product of the two masses that have the force between them.

So, the product of the mass of Earth, capital M, and the mass of this satellite—I’ll just focus on this satellite for now—divided by the distance between their center of masses squared. In this case, that is capital R squared.

If you wanted the centripetal acceleration, you would just divide force by mass. Remember, from Newton's second law, we know that f is equal to ma. And so, if we're talking about centripetal acceleration, it's the force of gravity that is causing it.

If we want to solve for centripetal acceleration, you just divide both sides of these by lowercase m, the mass of the satellite. Our centripetal acceleration here, if you divide our force of gravity by lowercase m, is going to be the universal gravitational constant times the mass of Earth divided by the radius squared.

We could then take this and substitute it back over here and solve for the magnitude of our velocity. So, what you're going to have is the universal gravitational constant times the mass of Earth divided by the radius squared is equal to the magnitude of our velocity, or the speed squared divided by capital R.

Now you can multiply both sides by R, and I'll swap sides as well. You're going to get v naught squared is going to be equal to capital G times capital M over R. Or, if you take the square root of both sides, you get v naught is equal to the square root of the universal gravitational constant times the mass of Earth divided by the distance between the center of masses.

Now, what's interesting here is we see the speed we need in order to maintain this orbit in no way is it a function of the mass of the satellite. I don't see a lowercase m anywhere in this expression on the right-hand side. Since this is independent of the mass of the thing that is in orbit, if you double the mass—if you go from lowercase m to 2 times lowercase m—it does not change the needed orbital speed.

So, what is the speed lowercase v of the heavier satellite in terms of v naught? It's going to be the same thing. We could write lowercase v is going to be equal to v naught. It doesn't matter what you do to the mass here; you're going to need the same orbital speed.

More Articles

View All
MOLTEN GLASS VS Prince Rupert's Drop - Smarter Every Day 285
Do you know what this is? If you do, you’re going to be, like, super excited about this video. If you don’t know what this is, let me bring you up to speed. This is called a Prince Rupert’s Drop, and it’s created by dripping molten glass down into water. …
Strategies for dividing by tenths
Let’s do a few more examples of thinking of strategies for dividing decimals. In the future, we’re going to come up with a more systematic way of doing it, but it’s really important to come up with some of these strategies because it gives you an intuitio…
Knowledge Makes the Existence of Resources Infinite
Knowledge is the thing that makes the existence of resources infinite. The creation of knowledge is unbounded. We’re just going to keep on creating more knowledge and thereby learning about more and different resources. There’s this wonderful parable of …
How To Work On A Long Term Plan (Without Having One)
There are many people who want to work toward a long-term goal, but they just don’t have one. They don’t know what they’ll be doing in the next five or ten years. They don’t know what life has in store for them. Maybe they’ll be in a different town with a…
Crossing a Snow Packed River | Primal Survivor
The big danger here is I could fall through, and depending on how deep it is, if it’s deep, that river could suck me under the ice. So, I’ve got to come up with a plan. This is where a little bit of, uh, mountaineering strategy comes in. Get my snow shov…
Tiny Fish Use Bacteria to Glow in the Dark | National Geographic
(Calming music) - I was in the Solomon Islands on a National Geographic expedition. We were working in a shallow reef, and we had a big blue light that we were filming fluorescent corals. One of the safety divers, Brendan Phillips, came up to me and just …