yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Impact of mass on orbital speed | AP Physics 1 | Khan Academy


3m read
·Nov 11, 2024

A satellite of mass lowercase m orbits Earth at a radius capital R and speed v naught, as shown below. So, this has mass lowercase m. An aerospace engineer decides to launch a second satellite that is double the mass into the same orbit. So, the same orbit, so this radius is still going to be capital R, and so this satellite, the second satellite, has a mass of 2m. The mass of Earth is capital M, so this is Earth right here.

What is the speed lowercase v of the heavier satellite in terms of v naught and speed? You can use the magnitude of velocity, and so that's why it's a lowercase v without a vector symbol on it. And so, what we're trying to figure out is the magnitude of its velocity in order to stay in orbit. What is lowercase v going to be equal to? So, pause this video and see if you can figure it out on your own.

All right, so to tackle this, remember the whole reason why something stays in orbit instead of just going in a straight line through space is because there is going to be a constant magnitude centripetal acceleration towards the center of Earth. It keeps turning, I guess you could say, the satellite in this circular path.

We've seen from other videos that the magnitude of our centripetal acceleration is going to be equal to the magnitude of our velocity. I'll just use this first satellite. So, the magnitude of its velocity squared divided by our radius, which in this case is capital R.

But what determines our centripetal acceleration? Well, we can explore Newton's law of gravitation there. So, if we think about the magnitude of the force of gravity, well, that's going to be equal to G, which is the universal gravitational constant, times the product of the two masses that have the force between them.

So, the product of the mass of Earth, capital M, and the mass of this satellite—I’ll just focus on this satellite for now—divided by the distance between their center of masses squared. In this case, that is capital R squared.

If you wanted the centripetal acceleration, you would just divide force by mass. Remember, from Newton's second law, we know that f is equal to ma. And so, if we're talking about centripetal acceleration, it's the force of gravity that is causing it.

If we want to solve for centripetal acceleration, you just divide both sides of these by lowercase m, the mass of the satellite. Our centripetal acceleration here, if you divide our force of gravity by lowercase m, is going to be the universal gravitational constant times the mass of Earth divided by the radius squared.

We could then take this and substitute it back over here and solve for the magnitude of our velocity. So, what you're going to have is the universal gravitational constant times the mass of Earth divided by the radius squared is equal to the magnitude of our velocity, or the speed squared divided by capital R.

Now you can multiply both sides by R, and I'll swap sides as well. You're going to get v naught squared is going to be equal to capital G times capital M over R. Or, if you take the square root of both sides, you get v naught is equal to the square root of the universal gravitational constant times the mass of Earth divided by the distance between the center of masses.

Now, what's interesting here is we see the speed we need in order to maintain this orbit in no way is it a function of the mass of the satellite. I don't see a lowercase m anywhere in this expression on the right-hand side. Since this is independent of the mass of the thing that is in orbit, if you double the mass—if you go from lowercase m to 2 times lowercase m—it does not change the needed orbital speed.

So, what is the speed lowercase v of the heavier satellite in terms of v naught? It's going to be the same thing. We could write lowercase v is going to be equal to v naught. It doesn't matter what you do to the mass here; you're going to need the same orbital speed.

More Articles

View All
Before the Startup with Paul Graham (How to Start a Startup 2014: Lecture 3)
That’s short, like long introductions are no good. Um, Sam knows. Uh, all right, ready, everybody? I’m not going to ask if the mic is working like in every talk so far. Um, I’ll just assume it’s working. I mean, no. [Applause] All right, well, make it wor…
LEGO TACO! And Other Great Images -- IMG! Episode #47
Do you consider yourself a fan of dogs? Or cloud ice cream? Well, it’s episode 47 of IMG! This is a mirror and this is clear glass. A broccoli tree house and, with the right outline, Europe can be a dragon. In the early 1900s, Arthur S. Mole and John D. …
Dung to the Rescue | Primal Survivor
[Music] Now I need to make a fire before it gets dark. I’m using a traditional method called a hand drill. This relies on friction between a soft wood base and a hard straight stick. I found that sticks that are hollow inside trap heat better, and it mak…
How did feathers evolve? - Carl Zimmer
Translator: Andrea McDonough Reviewer: Bedirhan Cinar Feathers are some of the most remarkable things ever made by an animal. They are gorgeous in their complexity, delicate in their construction, and yet strong enough to hold a bird thousands of feet in…
Explorer Albert Lin explores a cave burial site filled with ancient carvings
So little is known about the Picts. Searching for their lost kingdom means I must follow every lead, and there’s something on the walls of this cave that’s drawing me in. I’m going to start the scan. Okay, yeah, my handheld Light Art technology allows me…
Frederick Douglass and Abraham Lincoln: Two Leaders | National Geographic
ROBERTS: This is a story of an unlikely friendship that transformed America forever. (theme music plays) ♪ Wade in the water ♪ ♪ Wade in the water ♪ ♪ Wade in the water ♪ ♪ God’s gonna trouble the water ♪ ♪ Wade in the water ♪ ♪ Wade in the water ch…