yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Two Classes of Bitcoin? | Kitco NEWS
Joining me now is serial entrepreneur, Shark Tank star, and chairman of O shares ETFs, the one and only Kevin O’Leary, Mr. Wonderful. Wonderful to have you back with us! Great to be here. Thank you so much! All right, so Kevin, Jamie Dimon is saying tha…
Birth of the Vibrator | Original Sin: Sex
[Music] From the turn of the 20th century, sex has been literally electrified by technology. One of the first five electric gadgets, besides the sewing machine, fan, toaster, and tea kettle, was a plug-in sexual stimulator. The vibrator was a cure-all for…
Why NASA's Next Space Suits are not Pressurized to 14.7psi - Smarter Every Day 296
This is me trying to figure something out underwater. And those are NASA astronauts also trying to figure something out underwater. NASA is about to make a technical decision, and I want to try to explain why it’s so important. Like, if you could design …
How Bicycles Changed Women's Lives | Origins: The Journey of Humankind
There are always consequences to what we create, often unintended. And some can cause serious problems. But sometimes, those unintended consequences are for the best. Nowhere is this more true than with our advancements in transportation. One early ride c…
Investing During A Recession | Yahoo Finance
[Applause] [Music] Joining us now with more insight on where investors should put their money, we’ve got O’Leary Ventures Chairman, Mr. Wonderful himself, Kevin O’Leary. Kevin, always a pleasure to get some of your time, and thanks for taking it here with…
The $3 Trillion Private Equity Bubble is Finally Bursting
There’s been a lot of talk about how the U.S. real estate market is in a bubble, but people are getting it wrong. The real bubble is in a little corner of the finance industry that is unknown to the average person. This industry has trillions of dollars i…