yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
2015 AP Calculus AB/BC 4ab | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Consider the differential equation: the derivative of y with respect to x is equal to 2x minus y. On the axis provided, sketch a slope field for the given differential equation at the six points indicated. We see 1, 2, 3, 4, 5, 6 points. So what I can d…
Serfs and manorialism | World History | Khan Academy
In a previous video, we already talked about the feudal system. How you can have a king, and then you might have some vassals of the king who give an oath of fealty to the king in the homage ceremony. You might have a duke, and you could keep going down t…
How to Identify a Bull Shark | Raging Bull Shark
NARRATOR: Researchers have confirmed 100 bull shark attacks. But the real number may be much higher because the bull shark is so difficult to identify. When you first look at a bull shark, it doesn’t really jump out at you that it’s a bull shark. It just …
Kevin O'Leary - Music, Style, Money - Harry Rosen
Hi, I’m Kevin O’Leary from Dragon’s Den and Shark Tank, and I’m wearing a crisp Tom Ford from Harry Rosen. Oh yeah, baby! Business is so disciplined and scientific; it’s black and white. Either you make money or you lose it. Music is chaos. You need both …
Can We Fix Climate Change? | Explorer
We can’t really fix climate change. We can mitigate it. We can get to work on it. We can spread it out. We can make things better. What we got to do is stop burning fossil fuels immediately, as soon as we possibly can. Then there’s a strange effect that …
How Coffee Fuels Intellectual Discourse and Innovation #Shorts
In Europe, coffee and cafés similarly provided societal hubs for creative and intellectual discourse. It’s where philosophers and scientists such as Voltaire and Isaac Newton could meet and discuss their work with great enthusiasm. It’s famously where Jea…