yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
WHAT'S A DONG?
Hey, Vsauce. Michael here, next to a giant bird, which can only mean one thing. I’m in London, where even the pillows say “God save the Queen.” It’s a cushion, Michael. Alright, look. I’ve got a bird trying to tell me what to say. That’s right, in Englan…
HACK Wheel of Fortune!
Hey, Vsauce. Michael here, and today we’re going to talk about DONGS. Things you can do online now, guys. First of all, “danceromg577” brings up GogLogo.com, where you can make your own Google looking home page with whatever text you want. Or be like “Th…
Animal Survival Technique - Smarter Every Day (T-5)
Hey, it’s me, Destin. We got a lot of rain here in Alabama over the last couple of weeks, and I wanted to show you an interesting survival technique I’ve found in one of the local species. Anyway, you can see all the area behind me used to be a wide ope…
This Thing is Crazy Fast - Kodak Part 3- Smarter Every Day 286
Hey, it’s me, Destin. Welcome back to Smarter Every Day. This… [KA-CHUNK, KA CHUNK] [JET ENGINE NOISES] [CHU-KUH, CHU-KUH] [KER-FLOP] [DING!] is at the Kodak Film Factory in Rochester, New York. The fact that we get to film in the plant is amazing. This i…
Subject, direct object, and indirect object | Syntax | Khan Academy
Hello Chrome, Mary, and hello Rosie. Hi David! So, today we’re going to be talking about subject, direct object, and indirect object, identifying those within a sentence. But first, I suppose we should figure out what those things are. So, we’ve talked a…
Why do planets orbit? (With Dan Burns)
The explanation for gravity is that matter bends space. And so, you put mass in a place in space; it warps SpaceTime. Objects are not feeling a force of gravity; they’re just following the natural curvature. Um, and so you put matter and it warps SpaceT…