yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Acid–base indicators | Acids and bases | AP Chemistry | Khan Academy
Acid-base indicators are used in titrations to determine when the equivalence point is reached. Let’s look at a hypothetical indicator. In the protonated form, the indicator has the formula H-I-N. So this would be the acidic proton on this protonated form…
2015 AP Calculus BC 6c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Write the first four nonzero terms of the McLaurin series for e to the x. Use the McLaurin series for e to the x to write the third degree Taylor polynomial for G of x, which is equal to e to the x * F of x about x equal to 0. So McLaurin series, if tha…
BREAKING: The Federal Reserve Pivot (Major Changes Explained)
What’s up, Graham? It’s guys here, and here we go again. After a temporary pause, as of a few hours ago, the Federal Reserve increased their interest rates yet another 25 basis points, bringing us to the highest level that we’ve seen since the peak at the…
Rare Ghost Orchid Has Multiple Pollinators | Short Film Showcase
The swamp itself is steeped in mystery, holding a wildness that is so increasingly rare in modern life. There’s this very like ghost-like thing dancing off the edge of a tree; it just deepens the mystery. It deepens the power of those places. There’s just…
Invertible and noninvertibles matrices
Let me just write a general two by two matrix A. So let’s just say its elements are A, B, C, and D. Now, from previous videos, we have learned how to find the inverse of our matrix A. The formula that we went over, the inverse of our matrix A, is going to…
History and prehistory | The Origin of Humans and Human Societies | World History | Khan Academy
[Instructor] Anatomically modern human beings have been on this planet for roughly 200,000 years. And even though that’s a small fraction of the amount of time the Earth has been around, which is over 4 billion years, on a human scale, it’s an incredibly …