yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Presidential signing statements | US government and civics | Khan Academy
What we’re going to do in this video is talk about presidential signing statements. These are statements that presidents issue when they are signing a bill into law. They don’t always do this; in fact, it was quite infrequent for a very long time. The fir…
How can AI support students in California?
My name is Michelle Marbar, and I am a professional learning specialist with KH Academy. I am super excited to have you all with us today as we share all of the cool new resources that are coming your way. So, thank you all so much for joining us today. O…
Naming two isobutyl groups systematically | Organic chemistry | Khan Academy
In the last video, we named this molecule using the common names for this group right over here, and I thought it would be fun to also use to do the same thing, but use the systematic name. So, in the last video, we called this isobu, but if we wanted to …
Worked example of a profit maximization problem | Microeconomics | Khan Academy
We’re told corn is used as food and as an input in the production of ethanol and alternative fuel. Assume corn is produced in a perfectly competitive market. Draw correctly labeled side-by-side graphs for the corn market and a representative corn farmer o…
Marcus Aurelius - How to Stay Calm in Uncertain Times
When life feels out of control, it’s important to know how to stay calm, and in his Meditations, Marcus Aurelius, the last of the five good emperors of Rome, offers us several insights on how to do this. By practicing the following five virtues, you’ll be…
Howard Marks: 78 Years of Investing Wisdom in 60 Minutes (MUST WATCH)
How do you make money as an investor? The people who don’t know think the way you do it is by buying good assets, a good building, stock in a good company, or something like that. That is not the secret for success. The secret for success in investing is …