yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Negative definite integrals | Integration and accumulation of change | AP Calculus AB | Khan Academy
We’ve already thought about what a definite integral means. If I’m taking the definite integral from ( a ) to ( b ) of ( f(x) \, dx ), I can just view that as the area below my function ( f ). So, if this is my y-axis, this is my x-axis, and ( y ) is equ…
Why Is the Ocean Salty and Rivers Are Not? #shorts #kurzgesagt
Why is the ocean salty and rivers aren’t? In fact, most of the salt in the sea comes from rivers. But how can that be? It all starts with ocean water heading out on the journey. Warm surface water evaporates, the water vapor then rises to condense into cl…
7 Huge Stocks You Need to Watch in 2024
In 2023, the S&P 500 rose a whopping 24%. But did you know that just seven stocks made up 60% of that gain? These companies are dubbed the Magnificent 7, and in this video, we’re going to explore how they’re currently breaking the stock market and whe…
World's Heaviest Weight
An apple weighs about 1 newton; the world record for jet engine thrust is 570,000 newtons. And the Saturn V rocket that launched people to the moon had a thrust of 33,360,000 newtons. But how can we measure forces this big accurately? Well, we need to ask…
Common denominators: 3/5 and 7/2 | Math | 4th grade | Khan Academy
Rewrite each fraction with a denominator of 10. We have two fractions: 3 fifths and 7 halves, and we want to take their denominators of five and two and change them to be a common denominator of 10. Let’s start with 3 fifths. We can look at this visuall…
Worked example: Derivative of cos_(x) using the chain rule | AP Calculus AB | Khan Academy
Let’s say we have the function f of x, which is equal to cosine of x to the third power. We could also write it like this: cosine of x to the third power. We are interested in figuring out what f prime of x is going to be equal to. So, we want to figure o…