yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Parking Lot Drug Bust | To Catch a Smuggler
[music playing] [sirens blaring] DAVE: (VOICEOVER) She keeps reaching around in the center console. It looks like she’s trying to get something out, maybe a handgun. MAN: All right, GSP has a driver out of the vehicle. DAVE: That’s our girl. Was it loa…
Letting Go Of Resentment (Stoic & Buddhist perspectives)
There’s something special I would like to share with you today because very recently life taught me another lesson about resentment. Letting go of resentment is actually a lot easier than the mind makes us believe. I would like to share with you what I’ve…
How To Become A MILLIONAIRE - The Truth No One TELLS YOU! | Kevin O'Leary & Barbara Corcoran
Oh, you can’t believe where we are tonight. We’re in Barbara’s home. This place is a very secret penthouse. I’m trying to make it exciting, Barbara, but we have a beautiful view of the park. We’re in the kitchen because Barbara is making me dinner tonight…
Later stages of the Civil War part 2
All right, so we’ve been talking about the later stages of the Civil War. In the last video, we just did a brief overview of the end of 1863, after the North has won the Battle of Gettysburg and Lee has been turned around and sent back down to Richmond, w…
Debunking 3 myths about air pollution | Nat Geo Explores
(upbeat music) - [Narrator] Ever think of how many breaths of air you take in a day? It’s a lot, like 20 thousand, give or take a few. All day, all night, our bodies are at work bringing in the good (bell dings) and kicking out the bad (buzzer sounds). Bu…
Length of a trip in 24 hour time | Math | Khan Academy
Hello! So we’re told Colette rides her bike home from school every afternoon. She leaves school at 14:55 and arrives home at 15:25. How long does she ride her bike? So pause this video like always and see if you can answer that question: how long is her b…