yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Rescuing a 14 Ton Bread Truck | Ice Road Rescue
NARRATOR: In the south, a 14-ton bread truck is impaled on rocks. Thord and Andrzej were attempting to lift it clear until it threatened to crash back down with Thord underneath. [bleep] that bloody left bar right there. [tools clanging] You know, we have…
❄️🇬🇧 London Snow Day 🇬🇧❄️
Wow, it finally snowed again in London! A snow day not to be squandered inside. I’m supposed to be working today, but does daily vlogging count? I’m not a daily vlogger, but I think if I make a vlog, that can totally count. Come join me as I do nothing m…
Mr. Freeman, part 48
What are you looking at? You think I don’t know who you are and why did you come to our disco? Or you have something that is unknown to us? Of this yelling to make everybody free begins to spin our guts. Why you came to bothering us again? Eh? Before you…
5 Evening Habits That Will Skyrocket Your Productivity
Are you always waking up tired? Do you struggle to stay productive and consistent on a daily basis? Well, you’re not alone. In fact, the majority of people struggle with these issues too. But what if we told you there’s a fix? What if we told you that you…
Enumerated and implied powers of the US federal government | Khan Academy
In this video, we’re going to focus on enumerated powers versus implied powers for the federal government. Enumerated just means powers that have been made explicit, that are clear, that have been enumerated, that have been listed someplace. While implied…
Calculating neutral velocity | Special relativity | Physics | Khan Academy
All right, we can now do the math to solve for v. So let me just simplify the right-hand side of this equation. v minus negative e? Well, that’s just going to be two v. One minus negative of v squared over c squared? Well, that’s just one plus positive v…