yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
You Can't Touch Anything
Hey, Vsauce. Michael here. And today we’re going to get close, like really close. In fact, I want to answer the question: what’s the closest we can get to other objects and other people? Now, it might sound like kind of a simple, easy question, but when …
What Does Colonizing Mars Look Like? | MARS
What will life be like in a early Mars colony? ROGER LAUNIUS: Let’s take some stages in terms of how we might do things on Mars. There is exploration, somebody going out and coming back. The next stage would be some sort of research station. We will most…
Experiencing the currents of the coral reef | Never Say Never with Jeff Jenkins
JEFF: I’m a big guy, so I didn’t think that a current could actually push my body the way that it is. The most challenging thing about being in this current is to be at the mercy of Mother Nature and allowing the current to take you wherever it takes you…
Death of King George VI | Being The Queen
[Music] And we had a day out there to adjust and rest and do things. Prince Philip went; I went to sleep in a little room that was off to one side. The Queen was at a desk writing letters. The phone rang. My colleague said, “Mike, there’s a ghastly rumor…
Heating curve for water | Thermodynamics | AP Chemistry | Khan Academy
Let’s look at the heating curve for water. A heating curve has temperature on the y-axis, in this case, we have it in degrees Celsius, and heat added on the x-axis; let’s say it’s in kilojoules. Let’s say we have 18.0 grams of ice, and our goal is to cal…
Misconceptions About the Universe
There was a time when the universe was expanding so rapidly that parts of it were moving apart from each other faster than the speed of light. That time is right now. A lot of people make a big deal out of the fact that during inflation, right after our u…