yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Metaverse: Beyond Human
Imagine a world where you wake up, head to the office in the morning, to a party with friends in the evening, and then a live concert at midnight, all while sitting in the warmth of your home or from the comfort of your bed. That might just be part of hum…
Recognizing quadratic factor methods part 2
In the last video, we looked at three different examples. It really is a bit of a review of some of our factoring techniques and also to appreciate when we might want to apply them. We saw in the first example that it was just a process of recognizing a …
Molecules Bumping Into One Another | Genius
Should I brew more? Still warm, and it’s been awhile. But the Law of Cooling is a decaying exponential. But you need a measurement on the liquid to get the heat transfer coefficient. Don’t worry about the measurement for now. We’ll find a new way to thin…
How I made $136,474.43 in 30 days as a Real Estate Agent
What’s up you guys, it’s Graham here. So I ended up getting quite a few comments on my income breakdown video for one month in particular, and that was in April of 2017, where my income that month was a hundred and thirty-six thousand four hundred and sev…
The LARGEST Wealth Transfer Just Started | How To Prepare
What’s up guys, it’s Graham here. So you’re probably going to want to sit down for this because we’ve got a major problem. In June, it was reported that 61 percent of Americans are living paycheck to paycheck. As of a recent report, higher inflation and r…
Mayans and Teotihuacan | World History | Khan Academy
The Mayan civilization is one of the most long-lasting civilizations, not just in the ancient Americas, but in the world in general. You can see the rough outline here on this map of where the Mayan civilization occurred. You can see it has the Yucatan Pe…