yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Fentanyl Explained #shorts
Why does fentanyl feel so good? Let us try it so you don’t have to. Fentanyl reaches your brain in seconds, and like other opioids, binds to opioid receptors. It stops pain signals and also releases a flood of dopamine, so the pain melts away as you slide…
15 Ways to Create GENERATIONAL WEALTH
By the time 65 rolls around, only one in 100 people will be well off financially. 70% of wealthy families lose their wealth by the second generation and more so around 90% of families lose all wealth by the third generation. So, even if you make a fortune…
Flora, Fauna, Funga | Documentary | National Geographic Society
(Tranquil music) (Birds chirping) - [Giuliana] Without fungi, no plant could live outside of water. Without fungi, nothing would decompose. (Tranquil music continues) (Birds chirping) Most of the fluxes of nutrients on our planet would not exist. Basicall…
China is Uninvestable.
Stocks based in the world’s second largest economy are uninvestable again. Bernstein sales trading desk’s Mark Schilsky said in a note on Monday, “This idea of Chinese stocks being uninvestable has been a recurring theme in the media over the past few wee…
Harvesting microgreens with Chef Mory | Farm Dreams
Welcome to Curry’s Woods here in Jersey City. Thank you. Um, it was actually originally built for low-income residents around 1960. Wow! And then it was redone in the early 2000s. So what we’ve tried to do over the last couple of years is really find part…
The Meaning of Life
The meaning of life question is kind of a nonsense question. Any end goal will just lead to kind of another goal, lead to another goal. We just play games in life, right? You grow up, you’re playing the school game. You’re playing the social game, then yo…