yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Inside The Most Powerful Startup Community In The World
In 2005, four people came together to make something new. They thought if we bring together smart technologists and give them a little bit of money and a really good community, it would give founders a huge advantage. Out of that first Y Combinator batch …
The History and Future of Everything -- Time
Time makes sense in small pieces. But when you look at huge stretches of time, it’s almost impossible to wrap your head around things. So let’s start small—with minutes, hours, days. You probably spent the last 24 hours mostly sleeping and working, with s…
Ray Dalio & Bill Belichick on Building Great Teams
Okay, well, this looks comfortable. Good! It’s good to have you. Glad you’re comfortable, right? Thank you for writing this book. I can’t tell you how much I enjoy this—this, uh, very educational—and the way that you put your story principles into words i…
How can a dandelion hold back a flood? | Initiating the butterfly effect for good
I’m setting off on a journey around the world to follow the butterfly effect. I want to see how even a single action on one side of the globe can have a profound environmental impact on the other. My journey begins in Germany, with a family rewilding thei…
LearnStorm Growth Mindset: Salon owner on her career journey
My name is Sam Devine. I’m 27 years old and I am a salon owner. My story of becoming a hairstylist was pretty interesting. I had been cutting hair all throughout high school and all of my friends were playing and just having a good time. I never actually …
Exploring Saturn's Moons | Mission Saturn
This mission has been anything but straightforward. We have to adapt; we have to be agile to make sure that we don’t put a $3 billion asset in harm’s way. If you want to effect what’s coming up, you need—these flybys are planned out many, many months and …