yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
How Close Are We to Flying Cars? | How Sci-Fi Inspired Science
You’re stuck on the highway, bumper-to-bumper traffic. A commute that should have taken a few minutes has now somehow become an hour-long endeavor. And this happens. We all have one of two thoughts: one, monster truck; or two, wish I could just fly over t…
Opportunities for high school and college tutors
Hi everyone, Sal Khan here from Khan Academy. Many of you all know about another project, another not-for-profit that I’ve been involved with known as schoolhouse.world, which is all about giving folks free tutoring. We do that by finding amazing voluntee…
Multi step subtraction word problem
We’re told that a train traveling through Japan has 90 passengers. 52 passengers get off in Tokyo. In Kobe, another 29 passengers get off the train. No new passengers get on the train, and then they ask us how many passengers are still on the train. Paus…
Consumer credit unit overview | Teacher Resources | Financial Literacy | Khan Academy
Hi teachers, Welcome to the unit on consumer credit. So, just as a high level, this is going to cover everything from credit scores—what is it? How it’s able to give people who might give someone credit a sense of how likely you are to pay back that cred…
Can a Haircut Change Your Life? | The Story of Us
I’m in London to meet Joshua Coombes. He’s a hairdresser. And he believes small acts of love can make a big impact. Joshua hopes he can help the homeless, not by offering them money or food but by giving them a haircut. The reason I started cutting hair …
Economic models | Basic economics concepts | AP Macroeconomics and Microeconomics | Khan Academy
When you think about what the field of Economics is about, it is quite daunting. An economy is made up of millions, or even billions, of actors organized in incredibly complex ways. This is a complex real world, and each of the actors—human beings or orga…