yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Snatoms! The Magnetic Molecular Modeling Kit
Imagine this is a hydrogen atom. This is another one, and then this is H2, the hydrogen molecule. You can break it apart, add an oxygen atom and make H2O—water. A carbon with four hydrogens, that is methane. And you can actually combine it with water to m…
Four Point Landings | Science of Stupid
For me, The Perfect Landing follows an excellent inflight movie, a delicious meal, and a light nap. But for cats, The Perfect Landing follows some mindblowing midair acrobatics. They’re famous for their ability to land on their feet, which is something we…
Creation | A Pastor, a Rabbi and an Imam | The Story of God
Okay, so stop me if you’ve heard of a rabbi, a pastor, and an imam walk into a bar. Okay, so plus bard was a diner to discuss my shows, The Story of God, about creation. So the rabbi says, “There’s this beautiful story in Judaism where Adam is going thro…
Democratic ideals of US government
What we’re going to do in this video is discuss some of the foundational ideas for the United States of America. We could start at the most foundational of ideas, and that’s the notion of natural rights. John Locke, one of the significant Enlightenment th…
How To Be A Millionaire In 10 Years (Starting With $0)
What’s up, Graham? It’s guys here. So here’s the deal: it was recently found that real wages have barely budged in decades. More than half of Americans are living paycheck to paycheck, and the poorest 70% of U.S. households don’t even have a savings accou…
The End Of Retirement - Major Changes Explained
All right, so we have some pretty big changes for anyone who’s investing their money, building wealth, and working towards financial independence. And that would be the end of the four percent rule and why it no longer works, according to the person who i…