yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
How To Use The Buy Borrow Die Strategy To Build Wealth And Pay ZERO Taxes
Hey guys, Toby Mathis here. And today we’re going to go over the buy borrow die strategy for building wealth and paying zero taxes. Also, we will do it as a how-to in three steps. It’s actually pretty straightforward. And then I’ll give you some examples …
Parametric surfaces | Multivariable calculus | Khan Academy
So I have here a very complicated function. It’s got a two-dimensional input—two different coordinates to its input—and then a three-dimensional output. Uh, specifically, it’s a three-dimensional vector, and each one of these is some expression. It’s a bu…
A Beginners Guide to Stock Valuation (Intrinsic Value and Margin of Safety)
[Music] So when it comes to stock market investing, there are a lot of things that we as investors need to remember. For example, we need to understand the business. We need to make sure the business has a long-term durable competitive advantage. We need…
Warren Buffett: How to Know if a Stock is Undervalued
How do you calculate the intrinsic value of a stock? This may be the single most important question in all of investing. Everyone knows that the secret to good investing is finding undervalued stocks, but how exactly do you determine if a stock is underva…
The future of creativity in algebra | Algebra 1 | Khan Academy
[Music] Hi everyone, Sal Khan here. If you look at most of human history, the top artists, the top musicians were also mathematicians, and also scientists, and also engineers. This convergence between creativity and mathematics and science and engineering…
Porcelain in the Wreckage | Drain the Oceans
I grew up here in Portland. As a child, we all loved Indiana Jones. But it was actually really in high school when I was able to take an anthropology class, and it really piqued my interest. And then in community college, I started taking archeology class…