yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using matrices to transform the plane: Mapping a vector | Matrices | Precalculus | Khan Academy


3m read
·Nov 10, 2024

Let's say that we have the vector (3, 2). We know that we can express this as a weighted sum of the unit vectors in two dimensions, or we could view it as a linear combination. You could view this as (3) times the unit vector in the (x) direction, which is ((1, 0)), plus (2) times the unit vector in the (y) direction, which is ((0, 1)).

We can graph ((3, 2)) by saying, okay, we have three unit vectors in the (x) direction. This would be one right over there, that would be two, and then that would be three. Then we have plus two unit vectors in the (y) direction, so one and then two. We know where our vector is or what it would look like. The vector ((3, 2)) would look like this.

Now, let's apply a transformation to this vector. Let's say we have the transformation matrix. I'll write it this way: (\begin{pmatrix} 2 & 1 \ 2 & 3 \end{pmatrix}).

Now, we've thought about this before. One way of thinking about a transformation matrix is it gives you the image of the unit vectors. Instead of being this linear combination of the unit vectors, it's going to be this linear combination of the images of the unit vectors when we take the transformation. What do I mean? Well, instead of having (3(1, 0)), we are now going to have (3(2, 1)). Instead of having (2(0, 1)), we're now going to have (2(2, 3)).

So I could write it this way. Let me write it this way: the image of our original vector, I'll put a prime here to say we're talking about its image, is going to be (3) times instead of ((1, 0)), it's going to be times ((2, 1)). That's the image of the ((1, 0)) unit vector under this transformation. Then, we're gonna say plus (2) instead of ((0, 1)). We're gonna look at the image under the transformation of the ((0, 1)) vector, which the transformation matrix gives us, and that is the ((2, 3)) vector.

We can graph this. If we have ((3, 2)) and ((2, 2)), what I could do is overlay this extra grid to help us. So this is ((2, 1)), that's ((1, 2)). ((1, 2)) is ((2, 2)).

So, we have ((3, 2)) right over here. Let me do this in this color. This part right over here is going to be this vector. The ((3, 2)) is going to look like that. Then to that, we add ((2, 3)). So this is going to be (1, 2), and then (3). So this is going to be (1, 2, 3) and then we have ((2, 2)). So we end up right over there.

Let me actually get rid of this grid so we can see things a little bit more clearly. Here we have in purple our original ((3, 2)) vector. Now the image is going to be ((3, 2)) plus ((2, 3)).

So the image of our ((3, 2)) vector under this transformation is going to be the vector that I'm drawing right here. When I eyeball it, it looks like it is the ((10, 9)) vector. We can verify that by doing the math right over here.

So let's do that. This is going to be equal to (3 \times 2 = 6), (3 \times 1 = 3), and we're going to add that to (2 \times 2 = 4), (2 \times 3 = 6). Indeed, you add the corresponding entries: (6 + 4 = 10), and (3 + 6 = 9), and we're done.

The important takeaway here is that any vector can be represented as a linear combination of the unit vectors. Now, when we take the transformation, it's now going to be a linear combination not of the unit vectors, but of the images of the unit vectors. We saw that visually, and we verified that mathematically.

More Articles

View All
Overview of Ancient Mesopotamia
I want to do now is start thinking about ancient civilizations, and we’re going to start with Mesopotamia. Mesopotamia, the word, is literally referring to the fact that this region is, for the most part, between two rivers. You have the Tigris River and …
Nested conditionals | Intro to CS - Python | Khan Academy
What happens if you indent a conditional inside another conditional? To trace how the computer executes a program with nested conditionals, we need to look at the indentation. We know that an if starts a new conditional, so that means we have two conditio…
Last Wild Places: American Prairie Reserve | National Geographic
Everything that is in this creation is put here for a specific purpose. All the things that fly, all of the things that swim, all of the things that crawl, they all have a special place in our culture. It is our responsibility as the two-leggeds to try to…
Channing Tatum Makes Fire | Running Wild With Bear Grylls
CHANNING TATUM: God, all these stones, man. Look at them. They’re just massive boulders. BEAR GRYLLS: Nope, it’s a dead end. So all of this area is endless, like, dead ends. You reach a cliff face or you reach a boulder you can’t get over, you try and go…
The Dangers of Oversharing | STOICISM
In a world saturated with unfiltered thoughts and endless streams of personal confessions, the true strength lies in restraint. While the modern ethos screams to share everything everywhere, the ancient Stoics whispered the timeless secrets of wisdom and …
“Let Them Scream Whatever They Want” | Marcus Aurelius on Panic
How should we act when people around us are panicking? And how can we avoid panicking ourselves? Panic gets us nowhere, as it is a state of emotional turmoil during which our rationality is thrown overboard. So when we’re faced with a wide variety of opin…