yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing with z-scores | Modeling data distributions | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Before applying to law school in the U.S., students need to take an exam called the LSAT. Before applying to medical school, students need to take an exam called the MCAT. Here are some summary statistics for each exam.

For the LSAT, the mean score is 151 with a standard deviation of 10. For the MCAT, the mean score is 25.1 with a standard deviation of 6.4. Juwan took both exams; he scored 172 on the LSAT and 37 on the MCAT. Which exam did he do relatively better on?

So pause this video and see if you can figure it out. The way I would think about it is you can't just look at the absolute score because they are on different scales and they have different distributions. But we can use this information.

If we assume it's a normal distribution, or relatively close to a normal distribution, with a mean centered at this mean, we can think about how many standard deviations from the mean did he score in each of these situations. In both cases, he scored above the mean, but how many standard deviations above the mean?

So let's see if we can figure that out. For the LSAT, let me write this down. On the LSAT, he scored 172. So how many standard deviations is that going to be? Well, let's take 172, his score, minus the mean. So this is the absolute number that he scored above the mean, and now let's divide that by the standard deviation.

So on the LSAT, this is what this is going to be: 21 divided by 10. So this is 2.1 standard deviations above the mean. You could view this as a z-score; it's a z-score of 2.1. We are 2.1 above the mean in this situation.

Now let's think about how he did on the MCAT. On the MCAT, he scored a 37. The mean is a 25.1 and there is a standard deviation of 6.4. So let's see; 37.1 minus 25 would be 12, but now it's going to be 11.9.

11.9 divided by 6.4. So without even looking at this, this is going to be approximately, well, this is going to be a little bit less than 2. This is going to be less than 2.

So based on this information, we could figure out the exact number here. In fact, let me get my calculator out. So I get the calculator. If we do 11.9 divided by 6.4, that's going to get us to one point. I'll just say one point, I'll say approximately 1.86.

So approximately 1.86. So relatively speaking, he did slightly better on the LSAT. He did more standard deviations; although this is close, I would say they're comparable. He did roughly two standard deviations if we were to round to the nearest standard deviation.

But if you wanted to get precise, he did a little bit better relatively speaking on the LSAT. He did 2.1 standard deviations here, while over here he did 1.86 or 1.9 standard deviations. But in everyday language, you would probably say, well, this is comparable. If this was three standard deviations and this is one standard deviation, then you'd be like, oh, he definitely did better on the LSAT.

More Articles

View All
How To Invest in 2024 (How ANYONE can be RICH)
What’s up you guys, it’s Graham here. So this is a tragedy. After posting the video about the money mistakes to avoid in your 20s, which by the way, if you haven’t seen that video already, make sure to check that out so you can smash that like button. Tw…
Multiplying complex numbers graphically example: -3i | Precalculus | Khan Academy
Suppose we multiply a complex number z by negative 3i, and they show us z right over here. Plot the point that represents the product of z and negative 3i. So pause this video and see if you can work through that. All right, now let’s do it step by step.…
Worked example: separable differential equation (with taking exp of both sides) | Khan Academy
What we’re going to do in this video is see if we can solve the differential equation: the derivative of y with respect to x is equal to x times y. Pause this video and see if you can find a general solution here. So, the first thing that my brain likes …
From Homeless To Owning A Bugatti | TheStradman
I decided to live in my Audi TT in Beverly Hills, California. I would just stand there on Rodeo Drive for eight to twelve hours a day, just hoping to see cool cars. Every evening, I would park outside McDonald’s, edit my videos, use their free Wi-Fi, post…
Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy
Let’s think about the limit of the square root of 100 plus x minus the square root of x as x approaches infinity. I encourage you to pause this video and try to figure this out on your own. So, I’m assuming you’ve had a go at it. First, let’s just try to…
The Gateway to Secret Underwater Worlds | Podcast | Overheard at National Geographic
We’re in the middle of winter, so the water is very cold, and the sky was gray and the sea was gray as well, with no limit. You know, when you see the sky and the sea, the sea was very flat, and there is no limit between the sea and the sky. That’s Lauren…