yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Zero-order reactions | Kinetics | AP Chemistry | Khan Academy


3m read
·Nov 10, 2024

Let's say we have a hypothetical reaction where reactant A turns into products. Let's say the reaction is zero order with respect to A. If it's zero order with respect to A, we can write that the rate of the reaction is equal to the rate constant k times the concentration of A to the zero power. Since any number to the zero power is equal to one, then the rate of the reaction would just be equal to the rate constant k.

We can also write that the rate of the reaction is equal to the negative change in the concentration of A over the change in time. If we set these two ways of writing the rate of reaction equal to each other and we use some calculus, including the concept of integration, we will arrive at the integrated rate law for a zero order reaction. This law states that the concentration of A at time t is equal to the negative of the rate constant k times the time plus the initial concentration of A.

Notice that the integrated rate law is in the form of y = mx + b, which is the equation for a straight line. So, if we graph the concentration of A on the y-axis and the time on the x-axis, we will get a straight line if the reaction is zero order. The slope of that line is equal to the negative of the rate constant k. Therefore, the slope is equal to negative k, and the y-intercept of that line—right where the line intersects with the y-axis—this point is the initial concentration of A.

So, everything we've talked about assumes that there's a coefficient of one in front of the concentration of A. However, let's say we have a coefficient of 2 in front of A in our balanced equation. That means we need a stoichiometric coefficient of one-half, which changes the math. Now, instead of getting negative kt, we would get negative 2kt after we integrate, which means that the slope of the line when we graph the concentration of A versus time would be equal to negative 2k.

It's important to note that textbooks often just assume the coefficient in front of A is a 1, which would give the slope as equal to negative k. However, if the coefficient in front of A is a 2, then technically the slope of the line should be equal to negative 2k.

As an example of a zero order reaction, let's look at the decomposition of ammonia on a hot platinum surface to form nitrogen gas and hydrogen gas. In our diagram, we have four ammonia molecules on the surface of our platinum catalyst, and then we have another four that are above the surface of the catalyst. Only the ammonia molecules on the surface of the catalyst can react and turn into nitrogen and hydrogen.

The ammonia molecules above the surface can't react, and even if we were to add in some more ammonia molecules—so let's just add in some more here—those molecules still can't react. Therefore, the rate of the reaction doesn't change as we increase the concentration of ammonia.

So, we can write that the rate of the reaction is equal to the rate constant k times the concentration of ammonia. But since increasing the concentration of ammonia has no effect on the rate, that's why this is equal; that's why this is raised to the zero power, resulting in the rate of the reaction being just equal to the rate constant k.

Normally, increasing the concentration of a reactant increases the rate of the reaction. However, for this reaction, since we're limited by the surface area of the catalyst, if the catalyst is covered with ammonia molecules, increasing the concentration of ammonia molecules will have no effect on the rate of the reaction. Therefore, this reaction—the decomposition of ammonia on a hot platinum surface—is an example of a zero-order reaction.

More Articles

View All
Homeroom With Sal & Mayor Sam Liccardo - Wednesday, June 3
Hi everyone, welcome to the daily homeroom livestream. For those of you all who are wondering what this is, this is a series of conversations that we’ve started over the last few months. It was, I guess, catalyzed by COVID, but it’s a way of staying in co…
Example: Comparing distributions | AP Statistics | Khan Academy
What we’re going to do in this video is start to compare distributions. So for example, here we have two distributions that show the various temperatures different cities get during the month of January. This is the distribution for Portland; for example,…
The Obsession of the Modern World | Origins: The Journey of Humankind
In a society filled with human innovation, one invention stands out above them all: the one that has become the obsession of the modern world—money. Money was not just an intervention; it was a mental revolution and created a system of trust. An elaborate…
7 TYPES OF PEOPLE STOICISM WARNS US ABOUT (AVOID THEM) | STOICISM
You’ve probably heard the saying, “You’re the average of The Five People You spend the most time with.” Well, today we’re going to explore that idea through a stoic lens. Here we’ll go over the seven kinds of people who can sabotage your stoic philosophic…
Why You Must Be Ruthless in Business or Fail | Kevin O'Leary
[Music] Yeah, well, you’re preaching to the choir here, and I completely agree. That’s why I jumped ship from my, you know, job at the studio table your door, because you were personally motivated to stop living that way. Yeah, but can you talk about the…
Ice Breakers - Ep. 1 | National Geographic Presents: IMPACT With Gal Gadot
GAL: “I want them to feel like they don’t have to conceal what they love or who they are to conform.” This is Kameryn’s wish for the girls she coaches as a figure skater and life role model, as she reminds them to always embrace their beauty, their joy, a…