yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying f, f', and f'' based on graphs


3m read
·Nov 11, 2024

Let ( f ) be a twice differentiable function. One of these graphs is the graph of ( f ), one is of ( f' ), and one is of the second derivative of ( f' ). Match each function with its appropriate graph.

So, I encourage you to pause the video and try to figure out which of these is ( f ), which of these is ( f' ), and which of these is ( f'' ).

All right, now let's work through this together. There's a couple of ways to think about it. One way to think about it is if these were graphs of polynomials, then ( f ) would be a higher degree polynomial.

So you have ( f ); if you were to take the derivative of that, you would get ( f' ), which is this derivative with respect to ( x ). If you take the derivative with respect to ( x ) of that, you get ( f'' ).

So, whatever degree polynomial this is, if it is a polynomial, this will be a lower degree, and then this would be an even lower degree polynomial.

So, let's see if we can make sense of these graphs using that lens. One way to think about it is higher degree polynomials are going to have more minima or more potential minimum or maximum points. It looks like ( B ) here has the most minima and maxima; ( A ) has the second most, and then ( C ) has the third most.

So, my first hypothesis is that what we have right over here ( B ) that this is the graph of ( f ), that ( A ) is the graph of ( f' ), and that ( C ) is the graph of the second derivative ( f'' ).

So, that's just my hypothesis. Now let's see if it actually makes sense. What I can do is I can look at points where I know that the derivative would be zero and then look at the derivative to confirm or what I think is the derivative to confirm that they are. I could also look at trends.

So, let's say if this is ( f ), once again that was just my initial guess that this is going to be the function ( f ).

So, let's see; I have a slope of ( 0 ), a slope of a tangent line of ( 0 ) right over there. So slope of ( 0 ) right over there; I have a slope of ( 0 ) right over there. I have a slope of ( 0 ) right over there; I have a slope of ( 0 ), a horizontal tangent line right over there.

So, let's see if this is the derivative. Then this function should be equal to zero at this ( x )-value, this ( x )-value, this ( x )-value, and this ( x )-value, because the slope of the tangent line at those ( x )-values looks like zero.

So, this function is equal to zero here, here, here, and here. Well, these seem to coincide—this coincides with this, this coincides with that, and that coincides with that, and then that coincides with that.

So, I'm already feeling pretty good about it. So now let's see if this ( f'' ), what I think is ( f'' ), is indeed the derivative of ( f' ).

So, it's got a minimum point right over here. It looks like the slope of the tangent line here is zero. Let me do this in a different color. So this looks like we have a slope of ( 0 ) there. It looks like we have a slope of ( 0 ) right over there, and it looks like we have a slope of ( 0 ) right over there.

So that point for that ( x )-value, that ( x )-value, and that ( x )-value, and we see that this function is indeed equal to zero right over here, right over here, and right over here at the exact same ( x )-values.

So, based on what I just said, I would feel pretty good if I was under time pressure. I already feel pretty good about how I match things up.

But you could also look at trends between points. So, for example, let me pick out a trend. Between this maximum point and this minimum point, at first, the slope is decreasing. So, the slope is getting more and more negative, and you see from here to here is indeed getting more and more negative.

Then, it starts getting more and more positive starting right about here. So, that trend seems to be consistent.

You could look for these trends as well, but I find looking at the minimum and maximum where you see horizontal tangent lines or where the slope of the tangent line is zero—that those are the easiest to test for your derivatives or your second derivatives.

More Articles

View All
How Facebook is Stealing Billions of Views
A few days ago, Facebook proudly announced that they’d achieved eight billion video views a day. That’s really impressive, until you learn that in the first quarter of 2015, seven hundred and twenty-five of the 1000 most-viewed videos on Facebook were sto…
Jim Crow part 1 | The Gilded Age (1865-1898) | US History | Khan Academy
In this video, I want to talk about the system of Jim Crow segregation, which was common in the United States from about 1877 to approximately 1954, although it goes a little bit further than that. Now, you’re probably familiar with some of the aspects of…
Miyamoto Musashi | A Life of Ultimate Focus
Miyamoto Musashi is one of the most legendary samurai and famed as Japan’s greatest swordsman—undefeated in more than sixty duels. After he escaped death during the Battle of Sekigahara, Musashi became a ronin. Aside from being a swordsman, he was also a …
The Stock Market Is About To Flip | DO THIS NOW
What’s up, grandmas? Guys, here according to the caption. So, as we approach the new year of 2022, we got to talk about something that’s getting brought up a lot more often lately, now that the stock market is returning back to its previous all-time highs…
The Cure To Laziness (This Could Change Your Life) | Marcus Aurelius | Stoic | Stoicism
[Music] In the heart of a bustling city, a single decision by Marcus Aurelius over 2,000 years ago still echoes. The profound impact of stoic philosophy on our lives today is immense. This ancient wisdom teaches us not just to endure life’s storms, but to…
Dividing 2-digit numbers by 2 digit-numbers | Grade 5 (TX TEKS) | Khan Academy
Let’s get a little bit of practice dividing with two-digit numbers. So, let’s start by trying to figure out what 92 divided by 23 is. Pause this video and see if you can figure that out. All right, now let’s work through this together. So, I am going to …