yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Identifying f, f', and f'' based on graphs


3m read
·Nov 11, 2024

Let ( f ) be a twice differentiable function. One of these graphs is the graph of ( f ), one is of ( f' ), and one is of the second derivative of ( f' ). Match each function with its appropriate graph.

So, I encourage you to pause the video and try to figure out which of these is ( f ), which of these is ( f' ), and which of these is ( f'' ).

All right, now let's work through this together. There's a couple of ways to think about it. One way to think about it is if these were graphs of polynomials, then ( f ) would be a higher degree polynomial.

So you have ( f ); if you were to take the derivative of that, you would get ( f' ), which is this derivative with respect to ( x ). If you take the derivative with respect to ( x ) of that, you get ( f'' ).

So, whatever degree polynomial this is, if it is a polynomial, this will be a lower degree, and then this would be an even lower degree polynomial.

So, let's see if we can make sense of these graphs using that lens. One way to think about it is higher degree polynomials are going to have more minima or more potential minimum or maximum points. It looks like ( B ) here has the most minima and maxima; ( A ) has the second most, and then ( C ) has the third most.

So, my first hypothesis is that what we have right over here ( B ) that this is the graph of ( f ), that ( A ) is the graph of ( f' ), and that ( C ) is the graph of the second derivative ( f'' ).

So, that's just my hypothesis. Now let's see if it actually makes sense. What I can do is I can look at points where I know that the derivative would be zero and then look at the derivative to confirm or what I think is the derivative to confirm that they are. I could also look at trends.

So, let's say if this is ( f ), once again that was just my initial guess that this is going to be the function ( f ).

So, let's see; I have a slope of ( 0 ), a slope of a tangent line of ( 0 ) right over there. So slope of ( 0 ) right over there; I have a slope of ( 0 ) right over there. I have a slope of ( 0 ) right over there; I have a slope of ( 0 ), a horizontal tangent line right over there.

So, let's see if this is the derivative. Then this function should be equal to zero at this ( x )-value, this ( x )-value, this ( x )-value, and this ( x )-value, because the slope of the tangent line at those ( x )-values looks like zero.

So, this function is equal to zero here, here, here, and here. Well, these seem to coincide—this coincides with this, this coincides with that, and that coincides with that, and then that coincides with that.

So, I'm already feeling pretty good about it. So now let's see if this ( f'' ), what I think is ( f'' ), is indeed the derivative of ( f' ).

So, it's got a minimum point right over here. It looks like the slope of the tangent line here is zero. Let me do this in a different color. So this looks like we have a slope of ( 0 ) there. It looks like we have a slope of ( 0 ) right over there, and it looks like we have a slope of ( 0 ) right over there.

So that point for that ( x )-value, that ( x )-value, and that ( x )-value, and we see that this function is indeed equal to zero right over here, right over here, and right over here at the exact same ( x )-values.

So, based on what I just said, I would feel pretty good if I was under time pressure. I already feel pretty good about how I match things up.

But you could also look at trends between points. So, for example, let me pick out a trend. Between this maximum point and this minimum point, at first, the slope is decreasing. So, the slope is getting more and more negative, and you see from here to here is indeed getting more and more negative.

Then, it starts getting more and more positive starting right about here. So, that trend seems to be consistent.

You could look for these trends as well, but I find looking at the minimum and maximum where you see horizontal tangent lines or where the slope of the tangent line is zero—that those are the easiest to test for your derivatives or your second derivatives.

More Articles

View All
Dinosaurs 101 | National Geographic
(Dramatic music) (Roaring) - [Narrator] Probably no other creatures on the planet have struck as much fear and awe in our hearts as the dinosaurs. (Roaring) The earliest dinosaurs appeared about 245 million years ago during the Triassic Period, when most …
Safari Live - Day 360 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Hello everybody and good afternoon! How awesome is this? We’re kicking off our sunset safari with awesome animals! Well, we…
Why you feel so stuck in life
[Music] So the past year and a half, I’ve really been made aware of the intimate relationship between our psychology and our physiology. It seemed like, as we were locked down physically, we were also locked down mentally. As we felt kind of stuck in our …
Harmonic series and 𝑝-series | AP®︎ Calculus BC | Khan Academy
For many hundreds of years, mathematicians have been fascinated by the infinite sum which we would call a series of one plus one-half plus one-third plus one-fourth, and you just keep adding on and on and on forever. This is interesting on many layers. O…
Federalist No. 10 (part 2) | US government and civics | Khan Academy
In the part 1 video, we already saw James Madison and Federalist number 10 argue strongly that a republican form of government is better for addressing the issues of having a majority faction that might try to overrun minority groups. In this video, we’re…
See the Extreme Ice Changes Near the Antarctic Peninsula | Short Film Showcase
[Music] We’re here for a 3-week expedition to deploy some time-lapse cameras on the Antarctic Peninsula and on South [Music] Georgia. We’ve already told a powerful story of what’s going on way up North. I’ve always wanted to tell the story of what’s going…