yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
What Are Tundras? | National Geographic
What are tundras? Tundras are among the Earth’s coldest and harshest biomes. These ecosystems are treeless regions with extreme cold and low rainfall. There are two different types of tundras: alpine and arctic. Alpine tundras occur on mountains where tr…
The Stock Market Is About To Flip
What’s down you guys? It’s Graham here. So, as we start off the new year of 2021, we have to talk about something that’s been brought up a lot lately, especially now that the stock market is near its all-time high, and that has to do with our stock marke…
15 Biggest Opportunities You'll Have in Your Life
Life is full of opportunities that can shape your journey and define your future. From the early days of education to building a family, each opportunity gives you a chance for growth, fulfillment, and success. Here are the 15 biggest opportunities you’ll…
What Happened To My $100,000 Remodel
What’s up you guys, it’s Graham here. So I know a lot of you guys have been asking for an update on the status of my now over $100,000 renovation. I guess it’s about time I give everyone an update and discuss what’s going on because it’s been over a month…
Limits of composite functions | Limits and continuity | AP Calculus AB | Khan Academy
Let’s now take some limits involving composite functions. So over here we have the limit of G of H of x as x approaches three. And like always, I encourage you to pause the video and see if you can figure this out on your own. Well, we can leverage our l…
Spinning Disk Trick Solution
[Applause] So, in the spinning disc trick we saw that an asymmetrically weighted disc, when spun, actually flips so that the lighter side goes towards the bottom. Now, this is a variation on something called the tippy top, a little spinning toy that spins…