yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
An announcement from Khan Academy
Hi, I’m Sal Khan, founder of the not-for-profit Khan Academy, and I have some very exciting news. The data is in from our first year of the partnership between us and the College Board around KH Academy being the official practice for the SAT. What we’re…
Tactics That Keep You Moving In The Right Direction
Some of the most impactful tools that you can use to succeed in life are 100% free, and everyone has access to them, but almost no one uses them. We promise you that if you implement everything on this list, you will be a completely different person in le…
High Seas Rivalry | Wicked Tuna: Outer Banks
I’m stuck. We’re staying. Pretty sure Fren’s even staying. Yeah, he has to, though; his title’s on the line. Yeah, he knows. He hasn’t said a word on the radio to us. Uh, he probably won’t. We got three fish; Frenzy’s got four. I got to admit it, I absol…
The Biggest Ideas in Philosophy
In the city of Cyprus in 300 BC, there lived a very wealthy traitor called Zeno. While on a voyage from Phenicia to Perez, his boat sank along with all of his cargo. Because of that single event, an event that was entirely out of Xeno’s or anyone’s contro…
Similar triangles & slope: proportion using coordinates | Grade 8 (TX) | Khan Academy
We’re told that triangle DF and triangle DKL are similar right triangles. Complete the proportion to show that the slope of DF, so that’s this segment right over here DF, equals the slope of DL. So pause this video and see if you can complete it. They sta…
HACK YOUTUBE COMMENTS ... and other pranks! -- Up All Knight #4
Vsauce! On Wednesday, a lot of you guys were asking for a new episode of Up All Night, our technical pranks and curiosities show. Unfortunately, these guys are still on vacation, but I’m going to try to do this alone. Let’s go to begin. You can break int…