yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
Why Are Turkeys Running Wild in These Neighborhoods? | National Geographic
[Music] Don’t get close to them. Wild turkeys are not considered native to California, most of the state. Really, turkeys are not a problem, but they are certainly a local problem, particularly in some residential areas that have high-quality turkey habit…
Gravitational forces | Forces at a distance | Middle school physics | Khan Academy
When you hear the word gravity, you probably just think of things falling, like an apple from a tree. But did you know it’s also the reason why your lamp is staying on the floor? That’s because gravity is so much more than things falling down. Gravitation…
The Gay Rights Playbook Is a Model for Change in America | Evan Wolfson | Big Think
Gay people have been seeking the freedom to marry in the United States since what we talk about as the dawn of the modern gay rights movement. We usually date that movement’s beginning a little erroneously to Stonewall and the pushback against police hara…
Compound-complex sentences | Syntax | Khan Academy
Hello Garans, hello Rosie, hi Paige. So in this video, we’re going to talk about compound complex sentences. We just covered complex sentences in the last video, which is where you’ve got a simple sentence or one independent clause, and then that’s accomp…
Deep Sea Shark Stakeout | National Geographic
Can I get a clap from Buck? Excellent, Buck. And we go live in three, two. My name is Annie Roth, and I am a journalist on assignment with National Geographic. My name is Melissa Márquez. I’m a shark scientist aboard the “Ocean Explorer.” And like Meli…
The Housing Market Is Getting Destroyed
What’s up you guys, it’s Graham here, and if you thought the housing market was completely backwards a month ago, just wait, because today things are about to get a whole lot more confusing. With the entire housing market now predicted to climb another 7%…