yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
A Visit From The Hudson Bay Company | Barkskins
[door opening] [exhales] Francis, there is an Englishman waiting for you. These tables are no good. No good at all. He is from the Hudson Bay Company. I gave Lafarge exact measurements. A table that will not tilt or list. That is all I ask for, a proper t…
Why Isn't the Stock Market Crashing?
Hey guys, welcome back to the channel! In this video, we’re going to be talking about, we’re going to be trying to answer the question: why isn’t the stock market crashing now? For this video, we are going to look over in America. We’re going to be focusi…
A WARNING for ALL Investors
What’s up guys, it’s Graham here. So, we’ll be able to look back at this video in the future and see how all of this pans out. But I’m recording this today as we’ve just had our single best 50-day rally ever in history, and that also means that we’re offi…
Leonard Susskind on Richard Feynman, the Holographic Principle, and Unanswered Questions in Physics
What I wanted to start with is you’ve often been characterized as someone with like non-traditional, you know, kind of out there ideas. Some of which have become, you know, part of the physics canon; some of which, who knows what happened. Who they all be…
Partial derivatives and graphs
Hello everyone. So I have here the graph of a two variable function, and I’d like to talk about how you can interpret the partial derivative of that function. So specifically, the function that you’re looking at is f of x, y is equal to x squared times y…
Accelerate Your Career With These 15 Unbeatable Skills
What if we told you that how far you climb up the corporate ladder has nothing to do with your competency? Your boss proves it. And although you can’t fake your way all the way to the top, the majority of competent people get stuck much lower in the hiera…