yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
Tech's Impact On Young Brains | America Inside Out with Katie Couric
As more young people like David pull up in their rooms with their devices, studies show a generation delaying adulthood. Fewer get driver’s licenses, have after-school jobs, or date. But most alarming, the suicide rate for girls ages 15 to 19 doubled betw…
Making a Deal With a Cartel Boss | Locked Up Abroad
Boston is the university capital of the United States. There was a lot of rich kids who just wanted to smoke pot, and it was a perfect market for us. We felt indestructible; people were getting hired, they loved our product. [Music] Our business grew an…
The President as Commander-in-Chief | American civics | US government and civics | Khan Academy
So I’m here with Jeffrey Rosen, head of the National Constitution Center in Philadelphia, and we’re continuing to talk about Article Two of the U.S. Constitution, which talks about the powers of the president. Now we’re going to focus a little bit on the …
Bud Light - The Poster Boy For Brand Mismanagement
Well, Bud Light has become the poster boy for brand mismanagement from multiple perspectives. So let me, let me lay it out for you because the discussions that have risen and the narrative that’s risen around Bud Light is probably a good lesson for every …
Men wrestle 8 point deer to save its life (buck)
Hey, bring the chainsaw back, huh? Bring the chainsaw back! You want to? Let’s both get over here and try to hold him. When you think about environmental conservation and sustainment, you probably don’t think about deer hunters, or that’s where you’d be …
Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy
[Instructor] So we have two vectors here, vector A and vector B. And what we’re gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And …