yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
Special Investigation: Famous Tiger Temple Accused of Supplying Black Market | National Geographic
This is all being done at night. Pitch black, there are no lights. You see the cars driving into the Tiger Temple and the staff workers that are helping the wildlife traders. In December 2014, at the famed Tiger Temple in Thailand, investigators say a gro…
Absolute minima & maxima (entire domain) | AP Calculus AB | Khan Academy
So we have the function ( G(x) = x^2 \cdot \ln(x) ), and what I want to do in this video is see if we can figure out the absolute extrema for ( G(x) ). Are there ( x ) values where ( G ) takes on an absolute maximum value or an absolute minimum value? Som…
This Empowering Memorial Honors the Legacies of Military Women | National Geographic
I remember vividly at the dedication 20 years ago of the memorial. There was a World War I veteran in her uniform who spoke. She said, “When I served in the Navy, women were not even allowed to vote.” I thought, what a brave woman! So in that hundred year…
THE END OF $0 REAL ESTATE | Major Changes Explained
What’s up, grandma’s guys? Here. So, a few days ago, I made a video discussing my thoughts on the new personal tax increases along with an analysis of how that would affect the stock market. However, I purposely left out one crucial point, which has the …
Homeroom with Sal & Jacquelline Fuller - Thursday, July 16
Hi everyone! Welcome to our homeroom livestream. South Khan here from Khan Academy. For those of you who are wondering what this is, this is just something we started up several months ago, especially when we all have to become socially distant, as a way …
Homeroom with Sal & Jeffrey Rosen - Thursday, September 17
Hi everyone, welcome to the homeroom live stream! Sal here from Khan Academy. A happy National Constitution Day for all of y’all from the United States. We’ll be digging deep into the U.S. Constitution with one of the world’s leading experts on it. So, st…