yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
Being President: Most Deadly Job in America
When the president dies, who becomes the president? Well, the Constitution says what happens next is the vice president assumes the powers and duties of the office. Simple enough, but one back-up president is none back up president. So what happens next n…
A Selfish Argument for Making the World a Better Place – Egoistic Altruism
Until recently, the vast majority of the world population worked on farms, and the total production of the world’s economy was mostly the total agricultural output. And this output was limited by the fixed size of the land. The total output of the economy…
Cave Art 101 | National Geographic
[Narrator] Wooly mammoths, step bison, and other large mammals once roamed alongside people across Eurasia. Tens of thousands of years later, we may have a glimpse into this Ice Age world through the cave art left behind by early humans. (tinkling music) …
Examples of null and alternative hypotheses | AP Statistics | Khan Academy
We are told a restaurant owner installed a new automated drink machine. The machine is designed to dispense 530 milliliters of liquid on the medium size setting. The owner suspects that the machine may be dispensing too much in medium drinks. They decide …
Live from Mars 360° | National Geographic
You [Music] Welcome to the second season of Mars! I am Samuel, TV, I play Rubber for Car, and this is a beautiful Clementine for that Sand. I play Dr. Emily Johan, and we are in our beautiful studio in Hungary at Court. Last video, which is like one of t…
Second derivatives (implicit equations): find expression | AP Calculus AB | Khan Academy
Let’s say that we’re given the equation that (y^2 - x^2 = 4), and our goal is to find the second derivative of (y) with respect to (x). We want to find an expression for it in terms of (x) and (y). So pause this video and see if you can work through this.…