yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
The 5 Musketeers Eat Together – Day 89 | Safari Live
Going to see, and you have to ask him about his ping-pong tournament. Well, tell I wish you luck on your endeavors to the Heiner’s and a very, very warm welcome to Juma and sunny South Africa. It is as sunny as sunny can get; it is bright, it is breezy, a…
Relationships between scientific ideas in a text | Reading | Khan Academy
Hello readers, this is Professor Mario Molina, a scientist who won the Nobel Prize for Chemistry. Now, I’m going to use the example of Professor Molina to teach us about connections, or drawing connections between scientific information in a text, in a pi…
15 Things You Didn't Know About FENDI
Fifteen things you didn’t know about Fendi. Welcome to A Luxe Calm, the place where future billionaires come to get inspired. Hello, Alexers! It’s nice to have you back for another original brand video. We love iconic luxury brands, and you don’t get much…
Kirsty Nathoo - Managing Startup Finances
Morning everybody! Thank you for coming in at 9 o’clock. It’s an early start. So, as Kevin mentioned, my name is Kirsty Nathu, and I’m the CFO here at Y Combinator. So, I’ve actually helped now 2,000 companies, almost, as they’ve come through Y Combinato…
2015 AP Chemistry free response 3a | Chemistry | Khan Academy
Potassium sorbate, and they give us its formula right over here, has a molar mass of 150 grams per mole. They put this decimal here to show us that these are actually three significant figures; even the zero is a significant digit. Here is commonly added …
Worked examples: Forms & features of quadratic functions | High School Math | Khan Academy
The function M is given in three equivalent forms, which form most quickly reveals the Y intercept. So let’s just remind ourselves, if I have a function, the graph y is equal to M of x. These are all equivalent forms; they tell us that the function M is g…