yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
The Strangest Secret By Earl Nightingale
I’d like to tell you about The Strangest Secret in the world. Not long ago, Albert Schweitzer, the great doctor and Nobel Prize winner, was being interviewed in London. A reporter asked him, “Doctor, what’s wrong with men today?” The great doctor was sile…
2015 AP Chemistry free response 3a | Chemistry | Khan Academy
Potassium sorbate, and they give us its formula right over here, has a molar mass of 150 grams per mole. They put this decimal here to show us that these are actually three significant figures; even the zero is a significant digit. Here is commonly added …
Escape the cave
Before we dive in, I went to the UK recently and I took all this footage, and I have no idea what the hell to do with all of it. So, I’m just gonna let that play as I’m talking about this stuff. I wanted to address a topic that so many of you guys messag…
Confronting Pokimane | Inside The Million Dollar Empire
What’s up guys? It’s Graham here. So, a few weeks ago, dozens of you began sending me this video. It was of a Twitch streamer who goes by the username Pokey Main, who reacted to my feature in Glamour titled “How YouTuber Graham Stefan Lives in LA and Make…
HOW TO STAY CALM & POSITIVE IN LIFE | MARCUS AURELIUS | STOICISM INSIGHTS
It’s difficult to realize that nearly 2,000 years ago, a Roman emperor confronted many of the same issues that we do today. Marcus Aurelius, a Stoic philosopher and statesman, struggled with uncertainty, authority, and the enormous constraints of empire. …
When Big Oil Owns Your Soil | Parched
California is the third largest oil-producing state in the country. A lot of people don’t realize that. When they think of California, they think of vineyards and Hollywood. But we’ve been living with oil and gas production since the late 19th century. Ke…