yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
Introduction to nouns | The parts of speech | Grammar | Khan Academy
Hello grammarians! Welcome to the English parts of speech. We’re going to begin with the noun, the lovely, wonderful noun—your friend and mine. They’re mostly what you’re going to encounter in sentences. Most sentences in English contain at least one noun…
The Soul of Music: Exploring Chief Xian’s Ancestral Memory | Overheard at National Geographic
Foreign Douglas, I’m a producer here at Overheard, and this is part three of our four-part series focusing on music exploration and black history. It’s called “The Soul of Music.” National Geographic explorers will be sitting down with some of our favorit…
Caught in a mangrove rip tide | Primal Survivor: Extreme African Safari
The current’s already taking me. I can feel it, so I’ll just let it do its thing. Not far down the channel, we spot something. “Look at that! The fish trap!” So that’s obviously the Michikenda. Send it from tribes whose ancient ancestors migrated out of…
Visualizing division with arrays
[Instructor] We have three different pictures here, and my question to get us warmed up is which of these could represent 20 divided by four? Pause this video and see if you can figure that out. All right, so let’s go through each of these. And, actuall…
Harmonic Functions
Hello everyone. So, here I’d like to talk about harmonic functions. Now, harmonic functions are a very special kind of multivariable function, um, and they’re defined in terms of the Laplacian, which I’ve been talking about in the last few videos. So, th…
Impact of removing outliers on regression lines | AP Statistics | Khan Academy
The scatter plot below displays a set of bivariate data along with its least squares regression line. Consider removing the outlier at (95, 1). So, (95, 1) we’re talking about that outlier right over there and calculating a new least squares regression li…