yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
YC Ultimate Job Guide: Startup Stages
[Music] Yeah, we’re here to talk about startup stages. Try to be as informative as possible. Obviously, you know, given my position here, I would love for you to consider working at a YC startup. It sounds like some of you are already at startups, but I’m…
12 BEST Kinect HACKS
Vsauce, hello! Michael here. In IMG 12, I showed you some Kinect fails, but today I want to explore my favorite Kinect wins. The Kinect tracks 20 joints on your body 30 times a second, and with simple drivers, people from all over the world are taking it…
Tiger Shark Database | World's Biggest Tiger Shark?
NARRATOR: Next day, back in the Polynesian town of Papetoai, they visit an expert who ID sharks by their fins. So we were hoping to see if you could look through some of your databases. NARRATOR: Shark scientist Nicolas Buray keeps a photo archive of Tah…
How Much You Need To Invest By EVERY Age
What’s up you guys, it’s Graham here. So, I know I can’t be the only one who does this, but have you ever wondered how much does the average person have saved and invested by every age? Or what about how much income does it take to rank within the top one…
Invertible matrices and transformations | Matrices | Precalculus | Khan Academy
We have two two by two matrices here. In other videos, we talk about how a two by two matrix can represent a transformation of the coordinate plane, of the two-dimensional plane, where this, of course, is the x-axis, and this, of course, is the y-axis. W…
Homeroom with Sal & Superintendent Austin Beutner - Wednesday, September 30
Hi everyone! Sal Khan here from Khan Academy. Welcome to our homeroom live stream. I’m very excited about today’s guest, Superintendent Austin Buettner from Los Angeles Unified School District. So already, start thinking about some questions you might ha…