yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sine and cosine from rotating vector


2m read
·Nov 11, 2024

Now I'd like to demonstrate one way to construct a sine wave. What we're going to do is we're going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency.

Now this little animation is going to show us a way to construct a sine wave. So what I have here, this green line, is a rotating vector, and let's just say that the radius of this circle is one.

So here's a vector just rotating slowly around and around, and in the dotted line here, that yellow dot going up and down, that's the projection of the tip of the green arrow onto the Y-axis. As the vector goes round and around, you can see that the projection on the Y-axis is bobbing up and down and up and down. That’s actually going up and down in a sine wave pattern.

So now I'm going to switch to a new animation, and we'll see what that dot looks like as it goes up and down in time. So here's the plot; here's what a sine wave looks like. As you notice, when the green line goes through zero right there, let's wait till it comes around again, the value of the yellow line when it goes through zero is zero.

So this yellow line here is a plot of ( S(\Omega t) ). Now if I go to a projection, this projection was onto the Y-axis. I can do the same animation, but this time project onto the x-axis, and that'll produce for us a cosine wave.

Let's see what that looks like now. Now in this case, if we switch over, you can see that the projection, that dotted green line, is onto the x-axis. What this is doing is it's producing a cosine wave.

So this is going to be ( \cos(\Omega t) ). Now, because we're tracking the progress on the x-axis, the cosine wave seems to emerge going down on the page. So the time axis is down here.

When the green arrow is zero right there, the value of the cosine was one, and when it's minus 180°, it's minus one on the cosine. So that's why this is a cosine wave, and it has the same frequency as the sine wave we generated.

Now I want to show you these two together because it's just sort of a beautiful drawing. I'll leave our animation here for a second. We see our sine wave being generated in yellow, and in orange, we see the cosine wave being generated, and they're both coming from this rotating green vector.

So this is a really simple demonstration of a way to generate sines and cosines with this rotating vector idea. We're going to be able to generate this rotating vector using some ideas from complex arithmetic and Euler's formula.

I find these to be a really beautiful pattern, and it emerges from such a simple idea as a rotating vector.

More Articles

View All
Proof: Matrix determinant gives area of image of unit square under mapping | Matrices | Khan Academy
The goal of this video is to feel good about the connection that we’ve talked about between the absolute value of the determinant of a two by two matrix and the area of the parallelogram that’s defined by the two column vectors of that matrix. So, for ex…
Missing numbers in addition and subtraction | 2nd grade | Khan Academy
Let’s say someone walks up to you on the street and says, “Quick! “73 plus blank is equal to 57.” What would blank be? Well, there’s a couple of ways to think about it. Blank is essentially what you have to add to 57 to get to 73. It’s the difference be…
Nat Geo's Aaron Huey's Most Epic Photos | National Geographic
That’s how I actually get my work. It’s not because I know how to take pictures. It’s because I only wear gold shoes when I come into the National Geographic offices. (classical music) My name’s Aaron Huey. I’m a National Geographic photographer. A lot of…
TIL: There's Probably a Raccoon Living on Every City Block in North America | Today I Learned
Every city block probably has a raccoon living on it, and people very rarely see them or even know that they’re there. These animals have adapted to urban living in a way that makes them common and present in almost every major urban complex throughout th…
Visualizing Fourier expansion of square wave
So we started with a square wave that had a period of two pi. Then we said, “Hmm, can we represent it as an infinite series of weighted sines and cosines?” Working from that idea, we were actually able to find expressions for the coefficients for a sub 0…
3 rules to quickly improve your life
Okay, so here are three rules to live by that will quickly improve your life. Rule number one: Follow the path of most resistance. Now, this obviously isn’t an absolute rule. Like, you probably have a lot of resistance towards driving into oncoming traff…