yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gravitational forces | Forces at a distance | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

When you hear the word gravity, you probably just think of things falling, like an apple from a tree. But did you know it's also the reason why your lamp is staying on the floor? That's because gravity is so much more than things falling down. Gravitational forces are these invisible forces that pull objects together. So gravitational force is actually attracting the lamp to the floor, and these forces exist between all objects with mass.

So let's write these key points out about gravitational forces, which I'm going to use gf to represent. We said they are attractive forces and that they exist between all objects with mass—objects with mass. To explain this, we first need to remember a couple of things. Mass is how much matter objects have, and matter is the stuff an object is made of. Any object with mass generates a gravitational pull, so there is a gravitational force of attraction between every object.

The amount of gravitational force between two objects will depend on two things: the masses of the two objects and the distance between them. The mass of each object is proportional to the gravitational force. This means that the more mass an object has, the stronger its gravitational force. And now we can understand why gravity makes things fall. The Earth is massive—literally! It's almost 6 septillion kilograms. That's a 6 with 24 zeros after it, so it generates a huge attractive force.

For comparison, my lamp is only one kilogram, which is why if I jump, I fall towards the Earth and not towards my lamp. But we said the mass of the object is just one factor affecting the strength of its gravitational force. The other is the distance between objects. The more distance between the objects, the weaker the gravitational pull between them. For small objects without much mass, it doesn't take much distance for their gravitational forces between each other to be so weak that we don't notice them.

For something like the Earth, you have to go really far away to not be affected by its gravitational force of attraction. I mean, look at the moon—it's almost 240,000 miles away! That's almost 400,000 kilometers away, and it still feels effects from Earth's gravity. That's why it's orbiting us. But since the moon is also a pretty massive object, we do experience the effects of its gravitational pull on the Earth. This is why we have tides. The moon's gravitational force will pull on Earth's water, which results in us having high and low tides.

Now you might be wondering, if gravity can affect the moon or cause tides, how can we even move around? Why aren't we just face planted on the ground? Because Earth's gravity is pulling us towards it. It turns out that actually gravity is a pretty weak force. We only even notice its effects when an object is massive, like planets or stars, and the gravitational force on you is way weaker than most forces you exert every day. In fact, every time you pick up a glass of water, you're overpowering the entire mass of Earth. How cool is that?

More Articles

View All
Bumbling presuppositionalists
Uh, presuppositionalism, uh, is represented on YouTube by people like Paleocrites and Antiplagion. I imagine it goes down very well with Christians, and it’s full of snappy sound bites like “the impossibility of the contrary.” It allows you to say to your…
Science, technology, and the environment | High school biology | Khan Academy
So I really liked a snack, and one of my most favorite snacks of all time happens to be bananas. I mean, you can have them in a smoothie, with some peanut butter, on some toast—in any way, really. Usually, like most people, I just throw away the peels aft…
Manipulating functions before differentiation | Derivative rules | AP Calculus AB | Khan Academy
What I have listed here is several of the derivative rules that we’ve used in previous videos. If these things look unfamiliar to you, I encourage you maybe to not watch this video because in this video we’re going to think about when do we apply these ru…
Elad Gil and Pejman Nozad - Startup Investor School Day 3
Just yesterday, the main topic was really focused on the hardest thing about investing, I think, which is how do you decide to invest? How do you go about making decisions? So we heard from Dalton, who talked about founder meetings, talked about the proc…
Connecting limits and graphical behavior | Limits and continuity | AP Calculus AB | Khan Academy
So, we have the graph of y is equal to g of x right over here, and I want to think about what is the limit as x approaches 5 of g of x. Well, we’ve done this multiple times. Let’s think about what g of x approaches as x approaches 5. From the left, g of …
The Future of the Channel, and You
Good morning, internet. I came out here to write and to research, and to think about the channel and its evolution. The Staten Island video, for example, started life as part of the background reading for the Statue of Liberty video. Originally planned to…