yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gravitational forces | Forces at a distance | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

When you hear the word gravity, you probably just think of things falling, like an apple from a tree. But did you know it's also the reason why your lamp is staying on the floor? That's because gravity is so much more than things falling down. Gravitational forces are these invisible forces that pull objects together. So gravitational force is actually attracting the lamp to the floor, and these forces exist between all objects with mass.

So let's write these key points out about gravitational forces, which I'm going to use gf to represent. We said they are attractive forces and that they exist between all objects with mass—objects with mass. To explain this, we first need to remember a couple of things. Mass is how much matter objects have, and matter is the stuff an object is made of. Any object with mass generates a gravitational pull, so there is a gravitational force of attraction between every object.

The amount of gravitational force between two objects will depend on two things: the masses of the two objects and the distance between them. The mass of each object is proportional to the gravitational force. This means that the more mass an object has, the stronger its gravitational force. And now we can understand why gravity makes things fall. The Earth is massive—literally! It's almost 6 septillion kilograms. That's a 6 with 24 zeros after it, so it generates a huge attractive force.

For comparison, my lamp is only one kilogram, which is why if I jump, I fall towards the Earth and not towards my lamp. But we said the mass of the object is just one factor affecting the strength of its gravitational force. The other is the distance between objects. The more distance between the objects, the weaker the gravitational pull between them. For small objects without much mass, it doesn't take much distance for their gravitational forces between each other to be so weak that we don't notice them.

For something like the Earth, you have to go really far away to not be affected by its gravitational force of attraction. I mean, look at the moon—it's almost 240,000 miles away! That's almost 400,000 kilometers away, and it still feels effects from Earth's gravity. That's why it's orbiting us. But since the moon is also a pretty massive object, we do experience the effects of its gravitational pull on the Earth. This is why we have tides. The moon's gravitational force will pull on Earth's water, which results in us having high and low tides.

Now you might be wondering, if gravity can affect the moon or cause tides, how can we even move around? Why aren't we just face planted on the ground? Because Earth's gravity is pulling us towards it. It turns out that actually gravity is a pretty weak force. We only even notice its effects when an object is massive, like planets or stars, and the gravitational force on you is way weaker than most forces you exert every day. In fact, every time you pick up a glass of water, you're overpowering the entire mass of Earth. How cool is that?

More Articles

View All
Coral Reef Ocean Explorer - Meet the Expert | National Geographic
I’m Lizzy Daly, your host, and I am super thrilled to be back for yet another epic live! Today, if you’re new around here, welcome, welcome, welcome! You are in for a treat. Today, if you’ve been following over the past few weeks, let me tell you—we have …
Homeroom with Sal & Linda Darling-Hammond - Thursday, August 20
Hi everyone, Sal here from Khan Academy. Welcome to our homeroom live stream. I’m very excited about the conversation we’re going to have with Linda Darling-Hammond. Before we jump into that, I’ll give my standard announcements first. A reminder that Kha…
Origins of agriculture | World History | Khan Academy
This timeline here covers 200,000 years, from 200,000 years into the past to the present. Just to get a sense of the scale of this, if we were to go 2,000 years ago to the time of the Roman Empire, that would be roughly here on the timeline. If I were to …
Fundraising Advice from Female Founders
Okay, hi everyone! Next part of the session is going to be a fundraising panel where we have three ladies from the Seattle scene who are going to impart some advice on how they’ve approached fundraising and some of the lessons that they’ve learned. My n…
This U.S. Fencer Is Named After a Warrior Queen—and It Shows | Short Film Showcase
I don’t like to fight people, but you can’t get by without fighting. My mom named me after Queen Ninga from Angola; she was a warrior queen. I met Peter Westbrook when I was nine. Peter Westbrook is a legend in US fencing. He fenced at a time when black f…
Free Higgs!
[Music] to [Music] do [Music] me SP [Music] yeah twice right let’s go yeah that’s the H right there that’s what we like we do yeah yeah yeah. Now, congratulations to you! Thank you. What is the Higgs Boson? It is a particle, and it describes the stuff ab…