yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gravitational forces | Forces at a distance | Middle school physics | Khan Academy


3m read
·Nov 10, 2024

When you hear the word gravity, you probably just think of things falling, like an apple from a tree. But did you know it's also the reason why your lamp is staying on the floor? That's because gravity is so much more than things falling down. Gravitational forces are these invisible forces that pull objects together. So gravitational force is actually attracting the lamp to the floor, and these forces exist between all objects with mass.

So let's write these key points out about gravitational forces, which I'm going to use gf to represent. We said they are attractive forces and that they exist between all objects with mass—objects with mass. To explain this, we first need to remember a couple of things. Mass is how much matter objects have, and matter is the stuff an object is made of. Any object with mass generates a gravitational pull, so there is a gravitational force of attraction between every object.

The amount of gravitational force between two objects will depend on two things: the masses of the two objects and the distance between them. The mass of each object is proportional to the gravitational force. This means that the more mass an object has, the stronger its gravitational force. And now we can understand why gravity makes things fall. The Earth is massive—literally! It's almost 6 septillion kilograms. That's a 6 with 24 zeros after it, so it generates a huge attractive force.

For comparison, my lamp is only one kilogram, which is why if I jump, I fall towards the Earth and not towards my lamp. But we said the mass of the object is just one factor affecting the strength of its gravitational force. The other is the distance between objects. The more distance between the objects, the weaker the gravitational pull between them. For small objects without much mass, it doesn't take much distance for their gravitational forces between each other to be so weak that we don't notice them.

For something like the Earth, you have to go really far away to not be affected by its gravitational force of attraction. I mean, look at the moon—it's almost 240,000 miles away! That's almost 400,000 kilometers away, and it still feels effects from Earth's gravity. That's why it's orbiting us. But since the moon is also a pretty massive object, we do experience the effects of its gravitational pull on the Earth. This is why we have tides. The moon's gravitational force will pull on Earth's water, which results in us having high and low tides.

Now you might be wondering, if gravity can affect the moon or cause tides, how can we even move around? Why aren't we just face planted on the ground? Because Earth's gravity is pulling us towards it. It turns out that actually gravity is a pretty weak force. We only even notice its effects when an object is massive, like planets or stars, and the gravitational force on you is way weaker than most forces you exert every day. In fact, every time you pick up a glass of water, you're overpowering the entire mass of Earth. How cool is that?

More Articles

View All
Safari Live - Day 288 | National Geographic
Fricken Safari and may include animal kills and caucuses. Viewer discretion is advised. Look at the beautiful kudus! At the moment, they are all just trying to investigate what is happening in the surrounding. What a lovely afternoon! Most of all, welcome…
What VCs Look for When Investing in Bio and Healthcare
Right, so welcome back. In this next panel features bio and Healthcare investors from Andreessen Horowitz, Coastal Adventures, and Ben Rock. They are some of the most respected firms out there. So, before we bring them up on stage, I wanted to introduce y…
Organism life history and fecundity | Ecology | Khan Academy
We’re going to talk about in this video is what I consider one of the most fascinating subjects in biology, and that’s the variation we see from species to species in life histories and life spans and their rate of reproduction. For example, we have thre…
Mind-Blowing Theories on Nothingness You Need to Know | Documentary
Have you ever found yourself lost in deep thoughts about what nothingness truly is? Today, we are going to explore mind-blowing questions about nothingness and seek all the answers. Does ‘nothing’ exist, or is there only ‘quantum foam’? Does “The Schwinge…
A Senegalese Wrestler Trains to Become the ‘King of the Arena’ | Short Film Showcase
[Music] [Music] [Music] [Music] See the near their products a little veneer aficionado. My killer panel is the faucet, the more the electrons, you know, lon. Hello class, the fair loves fatality. [Music] Side [Music] Hopefully someone will own my business…
LC natural response derivation 3
In the last video, we took a guess at what the solution was for our differential equation, and we came up with an exponential as our guess. As we did the analysis, we developed a characteristic equation. We ended up with a complex answer for one of the ad…