yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating a P-value given a z statistic | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Fay read an article that said 26% of Americans can speak more than one language. She was curious if this figure was higher in her city, so she tested her null hypothesis: that the proportion in her city is the same as all Americans' - 26%. Her alternative hypothesis is it's actually greater than 26%, where P represents the proportion of people in her city that can speak more than one language.

She found that 40 out of 120 people sampled could speak more than one language. So what's going on? Here's the population of her city. She took a sample. Her sample size is 120, and then she calculates her sample proportion, which is 40 out of 120. This is going to be equal to 1/3, which is approximately equal to 0.33.

Then she calculates the test statistic for these results: Z is approximately equal to 1.83. We do this in other videos, but just as a reminder of how she gets this: she's really trying to say, well, how many standard deviations above the assumed proportion? Remember, when we're doing the significance test, we're assuming that the null hypothesis is true.

Then we figure out, well, what's the probability of getting something at least this extreme or more? If it's below a threshold, then we would reject the null hypothesis, which would suggest the alternative. But that's what this Z statistic is: how many standard deviations above the assumed proportion is that?

So the Z statistic, and we did this in previous videos, is found by calculating the difference between what we got for our sample (our sample proportion) and the assumed true proportion. So, 0.33 minus 0.26, all of that over the standard deviation of the sampling distribution of the sample proportions. And we've seen that in previous videos.

That is just going to be the assumed proportion. So it would be the assumed population proportion multiplied by 1 minus the assumed population proportion, all over n. In this particular situation, that would be 0.26 multiplied by 1 - 0.26, all of that over our n, which is our sample size of 120. If you calculate this, it should give us approximately 1.83.

So they did all of that for us. They say, assuming that the necessary conditions are met, they're talking about the necessary conditions to assume that the sampling distribution of the sample proportions is roughly normal. That's the random condition, the normal condition, and the independence condition that we have talked about in the past.

What is the approximate P value? Well, this P value would be equal to the probability in a normal distribution. We're assuming that the sampling distribution is normal because we met the necessary conditions. So in a normal distribution, what is the probability of getting a z greater than or equal to 1.83?

To help us visualize this, imagine. Let's visualize what the sampling distribution would look like. We're assuming it is roughly normal. The mean of the sampling distribution, right over here, would be the assumed population proportion. So that would be P with a little zero there that indicates the assumed population proportion from the null hypothesis, and that's 0.26.

This result that we got from our sample is 1.83 standard deviations above the mean of the sampling distribution. So, 1.83 standard deviations, and what we want to do is calculate this probability as the area under our normal curve right over here.

Now let's get our Z table. Notice this Z table gives us the area to the left of a certain z value. We wanted it to the right, but a normal distribution is symmetric. Instead of stating anything greater than or equal to 1.83 standard deviations above the mean, we could say anything less than or equal to 1.83 standard deviations below the mean, which is -1.83.

So we could look at that on this Z table right over here. Negative 1.83 gives us the value of 0.336. So there we have it. This is approximately 0.336, or a little over 3%, or a little less than 4%.

Fay would then compare that to the significance level that she should have set before conducting this significance test. If her significance level was, say, 5%, then in that situation, since this is lower than that significance level, she would be able to reject the null hypothesis.

She would say, "Hey, the probability of getting this result, assuming that the null hypothesis is true, is below my threshold. It's quite low, so I will reject it," and it would suggest the alternative. However, if her significance level was lower than this for whatever reason, if she had, say, a 1% significance level, then she would fail to reject the null hypothesis.

More Articles

View All
Couples Share the Happiness and Heartache of Interracial Marriage | National Geographic
That was the first time that I initially told him that I loved him was at Cairo. Do well, he likes to yodel. I can almost cry describing her. She’s the love of my life. I fell in love with her as she was getting out of a taxi the first time I ever saw her…
PURPOSE of WEALTH (Pt4): PROGRESS
Hey there, Alexer! We hope you’re as excited as we are for this fourth installment of the Purpose of Wealth series, especially today when we’re talking about progress. And what is progress, if not the optimization of life? The constant improvement or repl…
Verifying solutions to differential equations | AP Calculus AB | Khan Academy
[Instructor] So let’s write down a differential equation: the derivative of y with respect to x is equal to four y over x. And what we’ll see in this video is the solution to a differential equation isn’t a value or a set of values. It’s a function or a…
Earth's changing climate | Earth and society | Middle school Earth and space science | Khan Academy
Have you ever tried to imagine what the world was like in the distant past? Maybe you’d like to explore the age of the dinosaurs, when the Earth was much hotter than it was today. Perhaps you’d prefer when temperatures dropped to much colder than today. Y…
Weak base–strong acid titrations | Acids and bases | AP Chemistry | Khan Academy
Ammonia is an example of a weak base, and hydrochloric acid is an example of a strong acid. If we’re doing a weak base-strong acid titration, that means that ammonia is the analyte, the substance we’re analyzing, and we’re titrating ammonia with hydrochlo…
How to HACK Flash Games -- And More! *DONG*
Dang it. This is too real. I want something I could do online now, guys. DONG. Let’s start things off with a Tetris Overload. ‘Muse13NJ’ showed me this first person Tetris. When you turn a piece, so does your perspective. It’s fun, but ‘Dixavd’ would rath…