yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating a P-value given a z statistic | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Fay read an article that said 26% of Americans can speak more than one language. She was curious if this figure was higher in her city, so she tested her null hypothesis: that the proportion in her city is the same as all Americans' - 26%. Her alternative hypothesis is it's actually greater than 26%, where P represents the proportion of people in her city that can speak more than one language.

She found that 40 out of 120 people sampled could speak more than one language. So what's going on? Here's the population of her city. She took a sample. Her sample size is 120, and then she calculates her sample proportion, which is 40 out of 120. This is going to be equal to 1/3, which is approximately equal to 0.33.

Then she calculates the test statistic for these results: Z is approximately equal to 1.83. We do this in other videos, but just as a reminder of how she gets this: she's really trying to say, well, how many standard deviations above the assumed proportion? Remember, when we're doing the significance test, we're assuming that the null hypothesis is true.

Then we figure out, well, what's the probability of getting something at least this extreme or more? If it's below a threshold, then we would reject the null hypothesis, which would suggest the alternative. But that's what this Z statistic is: how many standard deviations above the assumed proportion is that?

So the Z statistic, and we did this in previous videos, is found by calculating the difference between what we got for our sample (our sample proportion) and the assumed true proportion. So, 0.33 minus 0.26, all of that over the standard deviation of the sampling distribution of the sample proportions. And we've seen that in previous videos.

That is just going to be the assumed proportion. So it would be the assumed population proportion multiplied by 1 minus the assumed population proportion, all over n. In this particular situation, that would be 0.26 multiplied by 1 - 0.26, all of that over our n, which is our sample size of 120. If you calculate this, it should give us approximately 1.83.

So they did all of that for us. They say, assuming that the necessary conditions are met, they're talking about the necessary conditions to assume that the sampling distribution of the sample proportions is roughly normal. That's the random condition, the normal condition, and the independence condition that we have talked about in the past.

What is the approximate P value? Well, this P value would be equal to the probability in a normal distribution. We're assuming that the sampling distribution is normal because we met the necessary conditions. So in a normal distribution, what is the probability of getting a z greater than or equal to 1.83?

To help us visualize this, imagine. Let's visualize what the sampling distribution would look like. We're assuming it is roughly normal. The mean of the sampling distribution, right over here, would be the assumed population proportion. So that would be P with a little zero there that indicates the assumed population proportion from the null hypothesis, and that's 0.26.

This result that we got from our sample is 1.83 standard deviations above the mean of the sampling distribution. So, 1.83 standard deviations, and what we want to do is calculate this probability as the area under our normal curve right over here.

Now let's get our Z table. Notice this Z table gives us the area to the left of a certain z value. We wanted it to the right, but a normal distribution is symmetric. Instead of stating anything greater than or equal to 1.83 standard deviations above the mean, we could say anything less than or equal to 1.83 standard deviations below the mean, which is -1.83.

So we could look at that on this Z table right over here. Negative 1.83 gives us the value of 0.336. So there we have it. This is approximately 0.336, or a little over 3%, or a little less than 4%.

Fay would then compare that to the significance level that she should have set before conducting this significance test. If her significance level was, say, 5%, then in that situation, since this is lower than that significance level, she would be able to reject the null hypothesis.

She would say, "Hey, the probability of getting this result, assuming that the null hypothesis is true, is below my threshold. It's quite low, so I will reject it," and it would suggest the alternative. However, if her significance level was lower than this for whatever reason, if she had, say, a 1% significance level, then she would fail to reject the null hypothesis.

More Articles

View All
WARNING: YouTubers are being paid to promote stocks.
Well, I think we need to have a little bit of a chat. What we’re talking about today is: Is it ethical for YouTubers to accept payments to review or promote stocks? That’s the question at hand. Now, this definitely wouldn’t fly where I’m from in Australi…
I FOUND THE BEST BANK ACCOUNTS OF 2020
What’s up you guys, it’s Graham here! So I think it’s finally time I give you an update on the best bank accounts of 2020 that will make you the most amount of money possible just for keeping your savings with them. Because, unfortunately, a lot has chan…
The Berkshire Hathaway Shareholder Meeting (From Then To Now)
Warren Buffett, the CEO of Berkshire Hathaway, is without doubt the king of investing. There’s never been anyone with a track record close to his, and it’s unlikely there will be for a very, very long time. Buffett took over Berkshire Hathaway back in 196…
Khanmigo for teachers
Hi! I’m Michelle, a professional learning specialist here at KH Academy and a former classroom teacher, just like you. Meet Kigo, your AI-driven companion, who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many excitin…
Virtual Mindfulness Retreat with Khan Academy and Headspace
And the intention for today’s hour is really just to relax, um, just to unwind. Not a lot of information coming at you, just embodied practices. And I know that a lot of you probably have commitments at home right now, maybe kids coming in. And so really …
Two Days to Delivery | Big Fish Texas
Yeah baby, let the games begin! We have 15,000 pounds of fish to catch. That’s a lot of fish to pull over rail! I don’t care who you are. I almost got every hook. Might be little great here on me, but I got this. I’ve been doing this my whole life! Yeah,…