yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Calculating a P-value given a z statistic | AP Statistics | Khan Academy


4m read
·Nov 11, 2024

Fay read an article that said 26% of Americans can speak more than one language. She was curious if this figure was higher in her city, so she tested her null hypothesis: that the proportion in her city is the same as all Americans' - 26%. Her alternative hypothesis is it's actually greater than 26%, where P represents the proportion of people in her city that can speak more than one language.

She found that 40 out of 120 people sampled could speak more than one language. So what's going on? Here's the population of her city. She took a sample. Her sample size is 120, and then she calculates her sample proportion, which is 40 out of 120. This is going to be equal to 1/3, which is approximately equal to 0.33.

Then she calculates the test statistic for these results: Z is approximately equal to 1.83. We do this in other videos, but just as a reminder of how she gets this: she's really trying to say, well, how many standard deviations above the assumed proportion? Remember, when we're doing the significance test, we're assuming that the null hypothesis is true.

Then we figure out, well, what's the probability of getting something at least this extreme or more? If it's below a threshold, then we would reject the null hypothesis, which would suggest the alternative. But that's what this Z statistic is: how many standard deviations above the assumed proportion is that?

So the Z statistic, and we did this in previous videos, is found by calculating the difference between what we got for our sample (our sample proportion) and the assumed true proportion. So, 0.33 minus 0.26, all of that over the standard deviation of the sampling distribution of the sample proportions. And we've seen that in previous videos.

That is just going to be the assumed proportion. So it would be the assumed population proportion multiplied by 1 minus the assumed population proportion, all over n. In this particular situation, that would be 0.26 multiplied by 1 - 0.26, all of that over our n, which is our sample size of 120. If you calculate this, it should give us approximately 1.83.

So they did all of that for us. They say, assuming that the necessary conditions are met, they're talking about the necessary conditions to assume that the sampling distribution of the sample proportions is roughly normal. That's the random condition, the normal condition, and the independence condition that we have talked about in the past.

What is the approximate P value? Well, this P value would be equal to the probability in a normal distribution. We're assuming that the sampling distribution is normal because we met the necessary conditions. So in a normal distribution, what is the probability of getting a z greater than or equal to 1.83?

To help us visualize this, imagine. Let's visualize what the sampling distribution would look like. We're assuming it is roughly normal. The mean of the sampling distribution, right over here, would be the assumed population proportion. So that would be P with a little zero there that indicates the assumed population proportion from the null hypothesis, and that's 0.26.

This result that we got from our sample is 1.83 standard deviations above the mean of the sampling distribution. So, 1.83 standard deviations, and what we want to do is calculate this probability as the area under our normal curve right over here.

Now let's get our Z table. Notice this Z table gives us the area to the left of a certain z value. We wanted it to the right, but a normal distribution is symmetric. Instead of stating anything greater than or equal to 1.83 standard deviations above the mean, we could say anything less than or equal to 1.83 standard deviations below the mean, which is -1.83.

So we could look at that on this Z table right over here. Negative 1.83 gives us the value of 0.336. So there we have it. This is approximately 0.336, or a little over 3%, or a little less than 4%.

Fay would then compare that to the significance level that she should have set before conducting this significance test. If her significance level was, say, 5%, then in that situation, since this is lower than that significance level, she would be able to reject the null hypothesis.

She would say, "Hey, the probability of getting this result, assuming that the null hypothesis is true, is below my threshold. It's quite low, so I will reject it," and it would suggest the alternative. However, if her significance level was lower than this for whatever reason, if she had, say, a 1% significance level, then she would fail to reject the null hypothesis.

More Articles

View All
Polynomials intro | Mathematics II | High School Math | Khan Academy
Let’s explore the notion of a polynomial. So, this seems like a very complicated word, but if you break it down, it’ll start to make sense, especially when we start to see examples of polynomials. So, the first part of this word, let me underline it: we …
2 step estimation word problems
We are told that a race car driver has 28 cars. Each car has four tires. He has to replace all the tires on the cars. He has 22 tires right now. Estimate the total number of tires he needs to buy. So pause this video and see if you can do that. And the ke…
Jungle Pilots are Superheroes - Smarter Every Day 152
Hey, it’s me Destin. Welcome back to Smarter Every Day. I’m currently sitting in an airport with my oldest son and we’re on our way to Idaho. Destin: Where does Superman get his superpowers? Son: Krypton. Destin: The planet Krypton. What about Batman? Ho…
BEST Images of the WEEK! ... IMG! #28
When your house breaks, fix it. And a private toilet! It’s episode 28 of IMG. Do you like cake? Do you like tacos? Well, get yourself a Taco Bell cake covered in say cheese, then say arson. Just don’t burn down the melting stairs. Wieners for kids! But z…
How To ADAPT To The Digital Pivot | Meet Kevin Asks Mr. Wonderful
There are no starving artists anymore. They’re not starving. They’re getting salaries of over a quarter million dollars a year if they’re any good, because they can tell the story and digitize the service or product online and entice customer acquisition.…
My Lightbulb Moment: Using Solar Energy to Feed a Village | National Geographic
Energy is life. My light bulb moment came during a trip to a remote part of China in 1994. We delivered simple solar home systems to families that had never before experienced electricity. Witnessing these families flip a switch and have electric lights c…