yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Limitless with Chris Hemsworth | Official Trailer | Disney+
Now I may be in pretty decent shape. Sure, I may look like an immortal Norse God, et cetera. Stop it. But… I know the clock is already ticking. I’m teaming up with the world’s leading Longevity experts. [BREATHES] Taking on six of the toughest tests of my…
Parallel structure | Syntax | Khan Academy
Hello grammarians. Hello Rosie. Hello Paige. Hi David. Hi David. Today all three of us are going to be talking about parallel structure. And I’ve always had trouble spelling the word “parallel,” but Rosie pointed out something just before we started reco…
Energy flow in a marine ecosystem| Matter and Energy Flow| AP Environmental Science| Khan Academy
In this video, we’re going to take a deeper look at the various producers and consumers in an ecosystem. For the sake of diversity, no pun intended, we’re going to look at a marine ecosystem. Let’s say, an estuary. An estuary generally refers to a place w…
HOW TO TURN $100 INTO $1000 (6 BEST WAYS)
What’s up, Graham? It’s Guys here. So, the other week, I posted a video about how to make $100 a day in passive income, but I’ll be honest: most of that video assumes a long-term investment, consistent work, and slowly building up to an amount that would …
Factors affecting reaction rates | Kinetics | AP Chemistry | Khan Academy
There are several factors that can affect the rate of a reaction. One factor is the concentration of a reactant. Most chemical reactions proceed faster when the concentration of one of the reactants is increased. For example, let’s look at the reaction of…
Thousandths on the number line
[Instructor] We’re asked what is the value of the point graphed on the number line, and this is the point right over here. So pause this video and see if you can figure that out before we figure it out together. All right, so let’s try to figure it out …