yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
The Science of Awkwardness
Hey, Vsauce. Michael here. Not knowing what to do with your hands or offering a handshake when the other person offers a fist bump. Forgetting someone’s name… Not having anything to say and forgetting your phone at home so you can’t be distracted by it. G…
When there aren't gains from trade | Basic economics concepts | AP Macroeconomics | Khan Academy
So let’s say we’re in a very simplified world where we have two countries: Country A and Country B. They’re each capable of producing apples or bananas or some combination of them. What this chart tells us is if Country A put all of their energy behind ap…
The #1 PROBLEM with Betterment Investing
What’s up you guys, it’s Graham here. So lately there’s been a very big focus towards investment apps and high interest savings accounts that offer you a pretty substantial value for what it is. Like, at first we had a lie bank with their 2.2 percent int…
Non-congruent shapes & transformations
[Instructor] We are told, Brenda was able to map circle M onto circle N using a translation and a dilation. This is circle M right over here. Here’s the center of it. This is circle M, this circle right over here. It looks like at first, she translates it…
Negative frequency
I want to talk a little bit about one of the quirkier ideas in signal processing, and that’s the idea of negative frequency. This is a phrase that may not initially make any sense at all. What does it mean to be a negative frequency? Could there be a sine…
Everything Wrong With The NEW X1 Credit Card
What’s up guys? It’s Graham here. So, okay fine, I get it. You guys have been sending me so many comments, DMs, emails, and even more comments asking me to review the Smart X1 credit card. So, if this finally makes everyone happy, then sure, we’re going …