yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Snowmobile Inspection | Life Below Zero
Go have a look at the undercarriage. I look for dead shocks, the Fela dead shocks. I want to feel some pressure and some compression. These are feeling good. One of our wear parts on a snow machine is a belt. You can burn them up, bust them, blow them; al…
Watch Artisans Craft a Beautiful Indian Bedspread | Short Film Showcase
To me, by John is the Serling eye of Isaiah; someone who understands the nuances because he has a knowledge of the process of creation. By John, of this Rezaï is the originality of his design, which actually has been designed to evoke a memory of fields o…
Exposing THE TRUTH about Alex Becker ads...
Hmm, see, I wonder what’s on YouTube today. I decided to see what videos I can watch and how much I can learn. Hmm, wait a second, what’s this? Oh, Crank are Donuts always video on it should be good. If you give me 45 seconds, I’m gonna show you how am I …
Response to Critique of Edgar The Exploiter
Hey everyone, I’m running a crowdfunding campaign for the creation of the third animation in the JAOT Help series. Uh, the name of it will be “Give Me Your Ball,” and you can find the link in the info box. So, if you didn’t take a look already and you hav…
Article VII of the Constitution | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m learning more about Article 7 of the U.S. Constitution, which is the provision that specified the conditions for the Constitution to become law. It reads, “The ratification of the conventions of nine states…
If You Have These 7 Traits, You’re in Your LAST Life Cycle
Narrator: Have you ever felt out of place, like you’re here but not of here? You laugh, you love, you play the part, but deep down something feels off. You watch the world rush by—careers, relationships, the endless chase—but it all feels hollow, like a g…