yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
15 Ways To Think About Money
What if we told you that most of you were thinking about money in the wrong way? The average person has no idea what money really is and how to leverage it for a life filled with freedom. They use it to pay bills, buy food, and acquire things that they us…
Experiencing the Galápagos Through a Phone Call Home | Short Film Showcase
Hey, hi! Welcome to the… yeah, I don’t know if I’m different. I did something quasi-adventurous, though. I went snorkeling! So, we go to a different island each day. I saw more wildlife in those three days than I’ve seen in my entire life. It was crazy! I…
15 Ways to Safe Guard Sudden Wealth
So you just sold your business, sold some land for 100x what you paid for, inherited a lot of money, retired rich, or won the lottery. Now what? Need a game plan, my friend? And by the end of this video, you’ll not only know the most effective ways to nev…
Comparing decimals in different representations
So what we’re going to do in this video is build our muscles at comparing numbers that are represented in different ways. So, for example, right over here on the left we have 0.37; you could also view this as 37 hundredths. And on the right we have 307 th…
Ask me anything with Sal Khan: #GivingTuesdayNow | Homeroom with Sal
Hello, welcome to our daily homeroom livestream! For those of y’all that this is your first time coming, this is something that we started doing when we started seeing school closures around the world. Khan Academy, we are a not-for-profit with a mission …
2015 AP Chemistry free response 3b | Chemistry | Khan Academy
A total of 29.95 milliliters of 1.25 molar hydrochloric acid is required to reach the equivalence point. Calculate the concentration of potassium sorbate when you put the brackets; they’re talking about concentration in the stock solution. So, let’s just…