yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Climbing Gym Heroes | Free Solo
I mean, how do you know when you’re ready is sort of a big question with free selling. And I think ultimately you just, you just know. [Music] I found out about it last night. My girlfriend called me around 10 o’clock, so I left work immediately. If any…
Do pineapples grow on trees? - Smarter Every Day 9
[Music] [Music] Okay, so you’re walking through the tropical rainforest, or at least what looks like it, and you come across a pineapple grove. These are what pineapples look like when they’re growing. This is a one that’s not very mature; you can see th…
Naming ionic compound with polyvalent ion | Atoms, compounds, and ions | Chemistry | Khan Academy
So we have the formula for an ionic compound here, and the goal of this video is: what do we call this thing? It clearly involves some cobalt and some sulfur, but how would we name it? Well, the convention is that the first element to be listed is going …
The Scale of The Universe
Powers of ten are pretty cool. They’re actually pretty powerful, if you know what I’m saying. But what is the power of ten in math? A power of ten is any integer power of the number ten, basically ten multiplied by itself a certain number of times, any nu…
Why You're Doomed to the 9-5 Trap | Charles Bukowski
People simply empty out their bodies with fearful and obedient minds. The color leaves the eye. The voice becomes ugly, and the body, the hair, the fingernails, the shoes, everything does. Does this sound familiar? A long day looking in front of the compu…
Essential Startup Advice with Adora Chung, Reham Fagiri, Tiffani Ashley Bell, and Alana Branston
All right, hello everyone! My name is Oh Dora. I’m one of the partners at Y Combinator. I have Rehan from App Deco, Alana from Bulletin, and Tiffany from The Human Utility. Today, our discussion will be around essential startup advice. I think there’s a …