yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
2d curl intuition
Hello everyone! So I’m going to start talking about curl. Curl is one of those very cool vector calculus concepts, and you’ll be pretty happy that you’ve learned it once you have it, for no other reason than because it’s kind of artistically pleasing. Th…
Summarizing nonfiction | Reading | Khan Academy
Hello readers. Today I’m going to be talking about the skill of summary, which you might be familiar with in the form of summarizing stories. It’s like a retelling, but shorter and in your own words. This is an important skill – summarizing fiction – but …
Street Fighter PUPPET SHOW: BLANKA!
No, you shut up. Oh, hello! I’m Adam Mlin from Wacky Gamer. I’m going to be sick! Did you know that I have an online puppet show called Animal Trash that you can watch on YouTube? It’s true! We even made a video for Vuce, but don’t take my word for it—ch…
Khan Kickoff Overview
Here’s a quick overview of our free motivation program, Con Kickoff. Let’s start with the challenge, which is that motivating students right now is just super hard. With everything going on in the world, getting students to show up and engage day after d…
Change in period and frequency from change in angular velocity: Worked examples | Khan Academy
We’re told that a large tire spins with angular velocity (4 \Omega). A smaller tire spins with half the angular velocity. I’m assuming half the angular velocity of the large tire. How does the period (T{\text{large}}) of the large tire compare with the pe…
Justification with the intermediate value theorem: table | AP Calculus AB | Khan Academy
The table gives selected values of the continuous function f. All right, fair enough. Can we use the Intermediate Value Theorem to say that the equation f of x is equal to 0 has a solution where 4 is less than or equal to x is less than or equal to 6? If …