yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Galileo the Scientific Parrot
Okay, so we’re at the University of Sydney to experiment with Dr. Phil’s dead bird. He’s a famous scientist, this guy. He helped us out back in, uh, the 16th century, I think. Uh, the 17th century, isn’t it? 17th century, 1600s. Thank you! Galileo was, u…
What’s in Air Freshener? | Ingredients With George Zaidan (Episode 6)
What’s in here? What does it do? And can I make it from scratch? Spoiler alert: I actually can’t, but the reason is fascinating. Ingredients. Now, there are a lot of different ways to get scents into the air. But if you’re actually interested in what tho…
Second "Ask Sal anything" session focused on life advice
Let’s start with, uh, Christine. I believe, Christine, you had your hand very patiently raised last time, so let’s start with you now. A reminder, we are recording this session, as I put the last one on LinkedIn, so this could happen again. So, by partici…
What you MUST KNOW about Robinhood Investing
What’s the guys? It’s Graham here. Now, normally I would never make two Robin Hood videos like this back-to-back, but I gotta say, this entire event has been extremely mind-boggling. There have been some new events that have just come up over the last day…
Why I Founded an Ocean Exploration Organization
When I was growing up, Jac Kisto had a big effect on my life. Fast forward, I learned how to dive. Um, and then about 11 years ago, I bought an ocean exploration vehicle. It’s a two-man submersible that goes down 1,000 meters, and I knew that I could give…
How to learn Japanese FAST? Tips from a native speaker 🇯🇵📚✨🌎✈️
Hi guys, it’s me, Judy. Today we’re going to be talking about how to learn Japanese. Since I’m a native speaker in Japanese, I’m going to be sharing you guys my perspectives as a native speaker, and I’m going to be talking about the mistakes that most of …