yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Filming the Alaskan Wilds - Behind the Scenes | Life Below Zero
We are here to document the lives of people living in Alaska. The harsh reality is the environment we’re up against; it makes it tough to do our job. They’re working on Life Below Zero, and it can be very dangerous—guns here, cameras here—you never know w…
3 year old reports on oil spill conditions on Alabama's Gulf coast
Hey, this is Sadie and daddy. Say hello, STI! Hello! And we are at the beach in Gulf Shores. What have we been doing this morning? We were playing. We’re going to the beach. Is there oil on the beach today? Did you see any oil? No, I didn’t either. What …
Top 7 Video Game Mods: V-LIST #6
How’s Vau doing? Michael here, and today I’m talking mods. Not console mods, though; this guy who just freaking microwaved his PS3 deserves an honorable mention. Instead, I’m talking about modifications of games. I’m going to start with Grand Theft Auto—n…
Senate checks on presidential appointments | US government and civics | Khan Academy
Presidents of the United States have many powers, but perhaps one of the most influential of these powers is the power of appointment. They can, of course, appoint members of their cabinet. They can appoint ambassadors, and they can appoint judges. We cou…
Peter Lynch: How to Invest in an Overvalued Market
One thing you’re trying to do is say all these public companies out there, here’s the company I really like. The fundamentals are terrific, their earnings are doing well, the competitors are doing poorly. I think this company’s doing terrific, and all of …
Summing op-amp circuit
Another form of an op-amp circuit is called the summing op-amp. We’re going to work through how this one works. What’s drawn here now is an inverting op-amp circuit with a single input. We’re going to call this V_a. We’ll call this A for now, and we have …