yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Estimating actual COVID 19 cases (novel corona virus infections) in an area based on deaths
The goal of this video is to help us all estimate the actual new COVID-19 cases per day in your area, and it’s based on analysis by Thomas Pueyo. He wrote an incredible blog post on Medium; this is the link, and I’ll also include it in the description bel…
This Taxi Driver Has an Amazing Life Story You'll Want to Hear | Short Film Showcase
I’ve been cab driver in Chicago around 12 years. I do the job like 12 hours a day. Every day I work because I have four kids. I have to support my kids and my family, and all the time I thank this country because they bring me as the refugees to this coun…
Organism life history and fecundity | Ecology | Khan Academy
We’re going to talk about in this video is what I consider one of the most fascinating subjects in biology, and that’s the variation we see from species to species in life histories and life spans and their rate of reproduction. For example, we have thre…
Introduction to cilia, flagella and pseudopodia | Cells | High school biology | Khan Academy
The goal of this video is to appreciate some of the structures that you see, even in unicellular organisms. So, this right over here is a picture of the amoeba Chaos carolinensis, and what you see here is a projection coming off from the main part of the …
What are affixes? | Reading | Khan Academy
Hello readers! Today we’re going to talk about things called affixes. One of the things that I love about the English language is how flexible its words can be. You can take little word parts and stick them together to make new words. If I read something…
Tony Robbins Endorsing The Jet Business!
Because he’s so passionate, he gets in the head of whoever he’s dealing with, and he really fights for you. You know, it’s like, you know, there’s so many people in this industry, and they’re in a hangar someplace, they’re working on the phone. Steve know…