yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Worked example: problem involving definite integral (algebraic) | AP Calculus AB | Khan Academy
We are told the population of a town grows at a rate of ( e^{1.2t} - 2t ) people per year, where ( t ) is the number of years. At ( t = 2 ) years, the town has fifteen hundred people. So first, they ask us approximately by how many people does the popula…
Beginnings of Islam part 2
Where we left off in the last video, we saw Muhammad being born into a tribal Arabia. He’s born into a powerful tribe, the Quraish, who are in control of Mecca. But his early life is difficult. His mother dies when he’s six; his grandfather, who’s taken c…
Armie Hammer Ascends From an Underground Cave | Running Wild With Bear Grylls
[music playing] ARMIE HAMMER: Whew! Yeah. Good to go. BEAR GRYLLS: OK. Our gear weighs nearly 75 pounds, and it’s too heavy to carry up this ladder. So we’re going to cache it on the sea floor like Navy SEALs do when they hide their gear until it can be…
Chernobyl - What It's Like Today
That is Chernobyl nuclear reactor number four. It melted down on April 26, 1986. So, what happened was so much heat was generated inside that reactor that it basically blew the top off, spreading radioactive isotopes throughout this whole surrounding area…
2015 AP Chemistry free response 5 | Kinetics | Chemistry | Khan Academy
Blue food coloring can be oxidized by household bleach, which contains hypochlorite. Household bleach would usually consider being sodium hypochlorite to form colorless products, as represented by the equation above. So this is the food coloring reacts wi…
Domain and range of lines, segments, and rays | Algebra 1 (TX TEKS) | Khan Academy
So what we have here is two different F of XS defined by their graphs, and what we want to do is figure out the domain and the range for each of these functions. So pause this video and try to figure that on your own before we do that together. Now let’s…