yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Peter Lynch: Everything You Need to Know About Investing in Less than 13 Minutes
If you want to build wealth and get rich from the stock market, you need to be studying Peter Lynch. The beauty of his investment approach is that it is so darn simple. If you follow his teachings, you don’t have to have an MBA from Harvard or be a Wall S…
Flipping and compressing a graph
The graph of y is equal to the absolute value of x is reflected across the x-axis and then compressed vertically by a factor of 8⁄3. What is the equation of the new graph? All right, so let’s think about this step by step. If I start, and I’m just going …
This Is the Future of Medicine | Origins: The Journey of Humankind
The collective wisdom of all of humankind led to the medical advancements that made us modern. We’re attacking the things that harm us on a microscopic level. We’re finding new ways of preventing disease every day. The question is, how far can we go? What…
My 4am Productive Morning Routine🌞⏰| Med School Diaries 📚👩🏻‍⚕️
Hi guys! It’s me, Judy. Today, I’m showing you my 4 AM morning routine. I start my morning routine with a morning yoga practice because I decided to care a bit about my mental health. Being a med student is not easy. You’re probably thinking, “Why are yo…
Top Markets To Look Out For In 2022 | Kevin O'Leary's 2022 Resolutions
You know, it’s that time of the year! Brand new year, lots of hope and excitement, but always the time of year to reflect on what’s just passed and also set up some resolutions. What’s wrong with that? Now for me, let me tell you what I’m doing. Number o…
Sal Khan Appreciates Teachers | Dear Class Of 2020
(chiming music) [Teacher] Four plus one is? (laughing) (celebrating) Hi teachers. Sal Khan here from Khan Academy. Now I just wanted to make sure that when congratulations are being passed around that we take the time to say congratulations and tha…