yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
The Last Days of the Romanovs | National Geographic
I think it’s a big tragedy, big tragedy for the country and for the world. For 300 years, the Romanovs ruled Russia as czars—loved, feared, revered, respected. But all too often, those who fly highest fall furthest. World War One brought Russia to revolut…
Khan Academy Classrooms has a new mastery system that makes personalized learning easier than ever!
Hello teachers, I’m Sal Khan, founder of the not-for-profit Khan Academy, with the goal of helping you accelerate outcomes in your classroom. I have an exciting announcement: what we are launching is a new mastery framework on Khan Academy. We have some …
A Conversation with Elizabeth Iorns - Advice for Biotech Founders
All right, guys, we’re gonna get started. Sorry for being late. So I have up here Elizabeth Irons. Is it Dr. Elizabeth Irons? No, you’re Professor Elizabeth Irons. So Elizabeth is a cancer biologist by training. You got your PhD in cancer biology from the…
Is This a PANDA?? --- IMG! #43
Happy birthday, hair’s on fire. And what is this dog worried about? Oh great. It’s episode 43 of IMG! Say “cheese.” Oh. Also on Tumblr this week I found this price sticker. Oh Pooh. Here’s an awesome plan I found on “dvice.” Not designs for a skyscraper,…
Solving equations and inequalities through substitution example 3
Joey is training for a hot dog eating contest. The person who eats the most hot dogs in 10 minutes is the winner. If r is the number of hot dogs that Joey can eat in a minute and n is the total number of hot dogs he eats in the contest, we can write the f…
How do Cashews Grow?? - Smarter Every Day 44
Hey, it’s me Destin, welcome to Smarter Every Day. Have you ever just sat down and taken a really close look at nuts? I’ve been doing that for the last few minutes, and I’ve come up with some pretty interesting observations. I mean, cashews and peanuts ha…