yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Batten Down | Life Below Zero
Like we’re stuck at home late. Red-flag! I know for three days I should go get firewood, and we should go get a couple days’ worth of something to eat here: caribou or a few ducks. The Hailstone family spends their summer living in Kowalik, away from the…
Traditional Norwegian Cuisine | Gordon Ramsay: Uncharted
[Narrator] Gordon Ramsay headed to Norway to learn how to cook like a true Viking. But how this region developed some of its traditional dishes happened long before these explorers took to the seas. I want to move to Norway. (laughing) (gentle music) [N…
Miyamoto Musashi | The Path of the Loner
At the age of fifteen, Miyamoto Musashi went on ‘musha shugyō’, which means ‘warrior’s pilgrimage’. During this time of his life, he traveled the land practicing his skills independently and engaged in a series of duels. After he received ronin status, he…
Cell division and organism growth | High school biology | Khan Academy
In this video, we’re going to talk about cell division and organism growth. Or another way to think about it is: how do we start with fertilization? We talk about this in other videos, but in sexually reproducing species, each individual starts off as a c…
Indestructible Coating?!
From the top of this forty-five meter drop tower, my friends from the “How Ridiculous” YouTube channel are about to release a watermelon. Here we are. In free fall for a full three seconds, the watermelon accelerates to over 100 kilometers per hour before…
Peasant Revolts | World History | Khan Academy
In this video, I want to look at popular uprisings in late medieval Europe. So we’re talking about between roughly the 14th and the 16th centuries. These are sometimes known as peasants’ revolts, and we’ll talk a little later about whether or not that’s a…