yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Charlie Munger Just DOUBLED His Alibaba Position!
Well guys, welcome to the new office. I was actually going to leave. I was going to have Sunday’s video be the first one where we’re actually in the office. But of course, right after I recorded that video, we have big breaking news from the one and only …
When Watersports Become Dangerous | Science of Stupid: Ridiculous Fails
Some things just don’t go together– oil and water, gas and matches, tequila and fireworks. So you can imagine my concern when I heard about a combination of kayaking and surfing. Then I saw this and thought perhaps I’m worrying about nothing. And then I …
How I Got the Shot: Photographing Great White Sharks off Cape Cod | National Geographic
I was trying to do something that hadn’t been done before. That’s it. Oh, I was trying to get a picture of a great white shark in Cape Cod, and that hadn’t been done. Messed up. I was using these seal decoys, swarming, doing aerial photography, using spo…
Polyglot speaking FLUENTLY in 4 languages | Japanese,Turkish,English,German🇯🇵🇹🇷🇩🇪🇺🇸🇬🇧
Hi, guys what’s up? It’s me Ruri. I am a first-year med student here in Turkey, and today we are doing a very basic video which is I’ll be talking in every single language that I know. Which are Japanese, Turkish, English, and German. I’ll timestamp every…
Citizenship in early America, 1789-1830s | Citizenship | High school civics | Khan Academy
In this video and the one that follows, I’m going to give you a brief overview of citizenship rights in early America. Who was considered a citizen? Did having citizenship mean that you had the right to vote? How did citizenship and voting rights change…
Fish or Shark? | Wicked Tuna | National Geographic
Oh, we made it down to Chatham. Oh, I hope we get a bite. Staying positive. You see, the whales, the tuna are generally with them. We started to hear them. We set up, basically down sea of them. Tons of bait here that they’re feeding on. Hopefully, the tu…