yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Congratulations Kendrick Lamar and Dave Free of pgLang on winning a Webby
Man, bro, let me tell you what had went down. I was two beds away from getting, bro, whole barbershop, bro. Yeah, oh my mama, bro, Peanut gonna call my phone talking about I just got paid. I looked at the phone, “You just got paid?” What, man? What the di…
Rainn Wilson Rappels Across a Ravine | Running Wild with Bear Grylls
RAINN: I guess I just, I’m gonna step off the edge. BEAR: Okay, Rainn. I’m not entirely sure how strong these ropes are, so just ease yourself off it. BEAR (off-screen): Actor Rainn Wilson and I are only a few miles from our extraction point. But a deep r…
Slope and intercept in tables
Flynn’s sister loaned him some money, and he paid her back over time. Flynn graphed the relationship between how much time had passed in weeks since the loan and how much money he still owed his sister. What feature of the graph represents how long it too…
Why Four Cowboys Rode Wild Horses 3,000 Miles Across America (Part 1) | Nat Geo Live
They asked me to, um, start off this speech with a kick. He keeps getting them in and getting them. I mean, J, you cannot eat this stuff! You know what the best thing to do, if you can get in there, just pull it out like a comb. Oh, all right, man, God. …
9 Money Habits Keeping You Poor
What’s up guys, it’s Graham here. So, ever since I was a kid, I’ve been fascinated with the secrets of what makes somebody financially successful. To be honest, I really just wanted to figure out why some people were good with money versus why others were…
Why become a product engineer? -- with Volley (YC W18) & Luminai (YC S20)
[Music] foreign [Music] Thanks for joining! For those of you who don’t know, I’m Paige from Y Combinator, where I work on our work at a startup team. Essentially, the team is helping all of our Founders hire great people like you. So, this is why I becom…