yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Spend More Time Making the Big Decisions
Uh, best piece of advice for someone 24 or a new Millennial, uh, out of college, I would say, you know, just spend more time on making the big decisions. There’s basically three really big decisions that you make around that age: it’s where you live, who…
Limits from tables for oscillating functions
The function h is defined over the real numbers. This table gives a few values of h. So they give us for different x values what is the value of h of x. What is a reasonable estimate for the limit of h of x as x approaches one? So with the table, we can …
Understanding decimal multiplication
We’re told that Sydney knows that 427 * 23 is equal to 9,821. Use this understanding to help Sydney solve 42.7 times 2.3. So pause this video and think about what you think it’s going to be. All right, now let’s do this together. You might realize that 4…
Neil on Back to the Future | StarTalk
Sci-fi geeks surely know this, but I don’t know how widespread it is in the rest of the population that the second installment of the “Back to the Future” trilogy, there’s a scene that takes place in the future on October 21st, way in the year 2015. Well,…
Set an Aspirational Hourly Rate
So we covered the skills that you need to get rich: specific knowledge, accountability, leverage, judgment, and lifelong learning. Let’s talk a little bit about the importance of working hard and valuing your time. No one is going to value you more than …
Constructing linear and exponential functions from graph | Algebra II | Khan Academy
The graphs of the linear function ( f(x) = mx + b ) and the exponential function ( g(x) = a \cdot r^x ) where ( r > 0 ) pass through the points ((-1, 9)) and ((1, 1)). So this very clearly is the linear function; it is a line right over here, and this …