yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Salmon Snag | Life Below Zero
So we’re gonna set this net. We’re gonna catch ourselves a bunch of salmon. If we have different kinds of salmon that come here, we’re gonna make dog food, people food, and food for gifts and giving, and trading, and whatever else we feel like doing for t…
Understanding SAFEs and Priced Equity Rounds by Kirsty Nathoo
I would like to introduce Kirsty, who is going to talk, uh, in much detail about SAFE’s notes, equity, and the like. “Kirsty.” “All right, good morning everybody. So, my name is Kirsty Nathu. I’m the CFO and one of the partners here at Y Combinator. I h…
Estimating multi-digit addition and subtraction word problems | Grade 5 (TX TEKS) | Khan Academy
We’re told Minley has 158,159 flight points. About how many total flight points does Minley have now? So why don’t you pause this video and have a go at it? And remember, they don’t want you to figure out the exact number; they just say about how many. So…
Multistep reaction energy profiles | Kinetics | AP Chemistry | Khan Academy
Let’s consider a reaction with the following multi-step mechanism. In step 1, A reacts with BC to form AC plus B, and in step 2, AC reacts with D to form A plus CD. If we add the two steps of our mechanism together, we can find the balanced equation for …
Great Schism or East-West Schism part 1 | World History | Khan Academy
In previous videos, we talked about the dramatic turnaround in the 4th century in terms of how Christianity was treated in the Roman Empire. As you enter into the 4th century, it’s persecuted by Diocletian, but then Constantine takes power. He’s sympathet…
What You Need To Know About The Future of Finance | Griffin Milks
So let’s get right into it. I’ll start with you, Ben, since for my audience you’re more of a new face here. Tell us a bit more about yourself, your background, and really why you chose to pursue a venture in the decentralized finance space. Ben: You bet!…