yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Peasant Revolts | World History | Khan Academy
In this video, I want to look at popular uprisings in late medieval Europe. So we’re talking about between roughly the 14th and the 16th centuries. These are sometimes known as peasants’ revolts, and we’ll talk a little later about whether or not that’s a…
Here, Cutting Down Millions of Trees is Actually a Good Thing | National Geographic
In general, in the conservation movement, you know we’re very favorable to tree planting. Yeah, what could be [Music] better? What we’re doing here is we’re restoring one of the most important conservation sites in Britain, if not Europe. There is an esti…
Introduction to standard way of multiplying multidigit numbers
What we’re going to do in this video is think about how we might multiply 592 times 7. And in general, we’re going to think about how we would approach multiplying something that has multiple digits times something that has one digit. The way we’re going…
Meme Culture: How Memes Took Over The World
Ah, here we go again. On the 1st of September 1939, Germany invaded Poland from the east, starting World War II. As you would expect, there is fear and panic throughout Europe. So, to calm the British population down and to prevent widespread panic, the w…
10 Ways To Instantly Improve Your Life
Significant improvement comes from long-term action. But there are lots of things you can actively do today that will instantly improve the quality of your life. Welcome to LAX. First stop, fix your sleep. We’re going to start off with probably the lowes…
Creativity break: what types of science jobs involve creativity? | Khan Academy
[Music] All science careers involve creativity. Think about it; we’re asking and answering questions, and we’re solving the world’s problems. So, the more creatively we can solve the world’s problems, the more new ideas, concepts, and approaches we can u…