yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Converting a complex number from polar to rectangular form | Precalculus | Khan Academy


2m read
·Nov 10, 2024

We are told to consider the complex number ( z ), which is equal to the square root of 17 times cosine of 346 degrees plus ( i ) sine of 346 degrees. They ask us to plot ( z ) in the complex plane below. If necessary, round the point coordinates to the nearest integer.

So I encourage you to pause this video and at least think about where we would likely plot this complex number.

All right, now let's work through it together. When you look at it like this, you can see that what's being attempted is a conversion from polar form to rectangular form. If we're thinking about polar form, we can think about the angle of this complex number, which is clearly 346 degrees.

346 degrees would be about... would be about 14 degrees short of a full circle, so it would get us probably something around there. We also see what the magnitude or the modulus of the complex number is right over here: square root of 17.

Square root of 17 is a little bit more than 4 because 4 squared is 16. So if we go in this direction, let's see... that's going to be about 1, 2, 3, 4. We're going to go right about there.

So if I were to just guess where this is going to put us, it's going to put us right around here—right around ( 4 - i ). But let's actually get a calculator out and see if this evaluates to roughly ( 4 - i ).

So for the real part, let's go 346 degrees, and we're going to take the cosine of it, and then we're going to multiply that times the square root of 17. So times 17 square root... a little over four, which is equal to that; actually, yes, the real part does look almost exactly four, especially if we are rounding to the nearest integer; it's a little bit more than four.

Now let's do the imaginary part. So we have 346 degrees, and we're going to take the sine of it, and we're going to multiply that times the square root of 17 times 17 square root... which is equal to... yup, if we were to round to the nearest integer, it's about negative 1.

So we get to this point right over here, which is approximately ( 4 - i ), and we are done.

More Articles

View All
Connecting limits and graphical behavior | Limits and continuity | AP Calculus AB | Khan Academy
So, we have the graph of y is equal to g of x right over here, and I want to think about what is the limit as x approaches 5 of g of x. Well, we’ve done this multiple times. Let’s think about what g of x approaches as x approaches 5. From the left, g of …
Peru Orphanage Update 2017 - Smarter Every Day 183
I can’t tell if it’s focused. Stay right there. Hey! It’s me, Destin. Welcome back to Smarter Every Day. This is my wife, Tara. My better half. [laughs] Every year in December, I make a video about an orphanage in Peru called Not Forgotten. Tara went down…
Joe Rogan brutally rejects Kamala Harris’s list of demands to appear on his podcast
The world’s biggest podcast host, Joe Rogan, has exposed a list of Kamala Harris’s demands in order to appear on his show. Following the hugely successful podcast interview between Joe Rogan and Republican Presidential nominee Donald Trump, which was view…
15 Things Emotionally Intelligent People Don't Do
Hey there, relaxer! We’re starting off today with a little bit of an exercise. Think of a loved one. What do you feel now? Think of a difficult situation. Did your emotions change? If the answer to this question was yes, well, you’re at least a little bi…
Even and odd functions: Tables | Transformations of functions | Algebra 2 | Khan Academy
We’re told this table defines function f. All right, for every x, they give us the corresponding f of x according to the table. Is f even, odd, or neither? So pause this video and see if you can figure that out on your own. All right, now let’s work on t…
Khan Academy Best Practices for Elementary School
Hey everyone, this is Jeremy Schieffling with Khan Academy. I’m so excited that you joined us today, not just because Khan Academy really wants to support you during this challenging time, but as a former kindergarten teacher, this session that’s dedicate…