yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Confidence interval simulation | Confidence intervals | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

The goal of this video is to use this scratch pad on Khan Academy, that was written by Khan Academy user Charlotte Allen, in order to get a better intuitive sense of confidence intervals.

So, we're here; we're dealing with a gumball machine where a certain proportion of the gumballs are going to be green. Let's say we can set that, and let's make that 60% of the gumballs are green. But let's say someone else comes along, and they don't actually know the proportion of gumballs that are green, but they can take samples.

So, let's say they take samples of 50 at a time. They draw a sample; the sample proportion right over here actually just happened to be 0.6. But then they could draw another sample; this time the sample proportion is 0.52, or 52% of those 50 gumballs happened to be green.

Now, you could say, "All right, well, these are all different estimates, but for any given estimate, how confident are we that a certain range around that estimate actually contains the true population proportion?" If we look at this tab right over here, that's what confidence intervals are good for.

In a previous video, we talked about how you calculate the confidence interval. What we want to do is say, "Well, there's a 95 percent chance," and we get that from this confidence level. Generally, 95% is the confidence level people typically use.

So, there's a 95 percent chance that whatever our sample proportion is, that it's within two standard deviations of the true proportion, or that the true proportion is going to be contained in an interval that is two standard deviations on either side of our sample proportion. Well, if you don't know the true proportion, the way that you estimate the standard deviation is with the standard error, which we've done in previous videos.

This is two standard errors to the right and two standard errors to the left of our sample proportion. Our confidence interval is this entire interval, going from this left point to this right point. As we draw more samples, you can see—it’s not obvious—but our intervals change depending on what our actual sample proportion is. We use our sample proportion to calculate our confidence interval because we're assuming whoever's doing the sampling does not actually know the true population proportion.

Now, what's interesting here about this simulation is that we can see what percentage of the time our confidence interval actually contains the true parameter. So, let me just draw 25 samples at a time, and you can see here that right now, 93% of our samples did our confidence interval actually contain our population parameter.

We can keep sampling over here, and we can see the more samples that we take, it really is approaching that close to 95% of the time our confidence interval does indeed contain the true parameter. Once again, we did all this math in the previous video, but here, you can see that confidence intervals—calculated the way that we've calculated them—actually do a pretty good job of what they claim to do.

If we calculate a confidence interval based on a confidence level of 95 percent, it is indeed the case that roughly 95% of the time, the true parameter, the population proportion will be contained in that interval. I could just draw more and more and more samples, and we can actually see that happening.

Every now and then, for sure, you get a sample where even when you calculate your confidence interval, the true parameter—the true population proportion—is not contained. But that is the exception; that happens very infrequently. 95 percent of the time, your true population parameter is contained in that interval.

Now, another interesting thing to see is if we increase our sample size, our confidence interval is going to get narrower. So, if we increase our sample size, we'll just make it 200. Now, let's draw some samples—notice now our confidence intervals are narrower.

But still, because our confidence level, which was used to calculate these intervals, is still 95 percent, when we draw a bunch of samples, we are still going to get roughly 95% of the time our confidence intervals contain our true population proportion. But roughly 5% of the time, they don't.

More Articles

View All
After the Avalanche: Life as an Adventure Photographer With PTSD (Part 2) | Nat Geo Live
In the field, I feel so connected to everything, but then I’d come home and I would feel so disconnected, and I started to hate coming home because I wasn’t stimulated. I’d have to sit in this quietness and feel this pain, and I didn’t know where it was c…
Simplifying square-root expressions | Mathematics I | High School Math | Khan Academy
Let’s get some practice simplifying radical expressions that involve variables. So let’s say I have ( 2 \times \sqrt{7x} \times 3 \times \sqrt{14x^2} ). Pause the video and see if you can simplify, taking any perfect squares out, multiplying, and then tak…
Why Are 96,000,000 Black Balls on This Reservoir?
(Shade balls rolling) - These are shade balls. They’re being dumped into this water reservoir in Los Angeles. And contrary to what you may have heard, their main purpose is not to reduce evaporation. So what are they really for? To find out, I’m visiting …
Calculating height using energy | Modeling Energy | High School Physics | Khan Academy
So I have an uncompressed spring here, and this spring has a spring constant of 4 newtons per meter. Then, I take a 10 gram mass, a 10 gram ball, and I put it at the top of the spring. I push down to compress that spring by 10 centimeters. Let’s call that…
Foundations of American Democracy - Course Trailer
Welcome to Foundations of American Democracy. This is where it all begins. You might think it’s just about the United States, but here we’re going to go much deeper and much further back than that. We’re going to go to the original ideas, dive into philos…
Estimating when subtracting large numbers
Let’s say that you have a jar of jelly beans, and you know that there are exactly 282 jelly beans in that jar of jelly beans. Then, the next day you come, and you see there are fewer. You say, “What happened?” Let’s say someone who lives with you or your …