yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Confidence interval simulation | Confidence intervals | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

The goal of this video is to use this scratch pad on Khan Academy, that was written by Khan Academy user Charlotte Allen, in order to get a better intuitive sense of confidence intervals.

So, we're here; we're dealing with a gumball machine where a certain proportion of the gumballs are going to be green. Let's say we can set that, and let's make that 60% of the gumballs are green. But let's say someone else comes along, and they don't actually know the proportion of gumballs that are green, but they can take samples.

So, let's say they take samples of 50 at a time. They draw a sample; the sample proportion right over here actually just happened to be 0.6. But then they could draw another sample; this time the sample proportion is 0.52, or 52% of those 50 gumballs happened to be green.

Now, you could say, "All right, well, these are all different estimates, but for any given estimate, how confident are we that a certain range around that estimate actually contains the true population proportion?" If we look at this tab right over here, that's what confidence intervals are good for.

In a previous video, we talked about how you calculate the confidence interval. What we want to do is say, "Well, there's a 95 percent chance," and we get that from this confidence level. Generally, 95% is the confidence level people typically use.

So, there's a 95 percent chance that whatever our sample proportion is, that it's within two standard deviations of the true proportion, or that the true proportion is going to be contained in an interval that is two standard deviations on either side of our sample proportion. Well, if you don't know the true proportion, the way that you estimate the standard deviation is with the standard error, which we've done in previous videos.

This is two standard errors to the right and two standard errors to the left of our sample proportion. Our confidence interval is this entire interval, going from this left point to this right point. As we draw more samples, you can see—it’s not obvious—but our intervals change depending on what our actual sample proportion is. We use our sample proportion to calculate our confidence interval because we're assuming whoever's doing the sampling does not actually know the true population proportion.

Now, what's interesting here about this simulation is that we can see what percentage of the time our confidence interval actually contains the true parameter. So, let me just draw 25 samples at a time, and you can see here that right now, 93% of our samples did our confidence interval actually contain our population parameter.

We can keep sampling over here, and we can see the more samples that we take, it really is approaching that close to 95% of the time our confidence interval does indeed contain the true parameter. Once again, we did all this math in the previous video, but here, you can see that confidence intervals—calculated the way that we've calculated them—actually do a pretty good job of what they claim to do.

If we calculate a confidence interval based on a confidence level of 95 percent, it is indeed the case that roughly 95% of the time, the true parameter, the population proportion will be contained in that interval. I could just draw more and more and more samples, and we can actually see that happening.

Every now and then, for sure, you get a sample where even when you calculate your confidence interval, the true parameter—the true population proportion—is not contained. But that is the exception; that happens very infrequently. 95 percent of the time, your true population parameter is contained in that interval.

Now, another interesting thing to see is if we increase our sample size, our confidence interval is going to get narrower. So, if we increase our sample size, we'll just make it 200. Now, let's draw some samples—notice now our confidence intervals are narrower.

But still, because our confidence level, which was used to calculate these intervals, is still 95 percent, when we draw a bunch of samples, we are still going to get roughly 95% of the time our confidence intervals contain our true population proportion. But roughly 5% of the time, they don't.

More Articles

View All
Michael Burry: The next huge crash is coming soon | This is his stock portfolio
Michael Burry hasn’t been shy about saying that the stock market is extremely overvalued and on the brink of collapse. This is the same investor who became a legend by accurately predicting and betting on a different crash: the crash of the U.S. housing m…
Deficits and debt | AP Macroeconomics | Khan Academy
Two terms that you’ve likely heard in the context of government spending, budgets, and borrowing are the terms deficit and debt. They can get a little bit confusing because they’re associated with borrowing in budgets and spending, and they both start wit…
Constant of proportionality from tables | 7th grade | Khan Academy
We are asked which table has a constant of proportionality between y and x of 0.6. Pause this video and see if you can figure that out. All right, so just as a reminder, the constant of proportionality between y and x, one way to think about it is that y…
How to Get Ahead of 99% of People
We all want better for ourselves. Whether it’s a bigger house, nicer car, higher salary, thriving business, or more recognition, we all want things we don’t have. Most of us spend the majority of our lives chasing these things. Success looks different to …
LearnStorm 2022
Hi teachers, Sal Khan here from Khan Academy. I just wanted to remind you that LearnStorm is back and better than ever. In case you’re wondering why you should use LearnStorm or the LearnStorm tracker, we just have to remember what it’s like to be a lear…
Watch: Fireflies Glowing in Sync to Attract Mates | National Geographic
[Music] The synchronous Firefly ranges throughout the southern Appalachian. It really is a pretty magical thing to see. I think people are just fascinated by fireflies, you know, especially growing up. A lot of people have experiences of catching fireflie…