yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using related volumes | Solid geometry | High school geometry | Khan Academy


4m read
·Nov 10, 2024

  • [Instructor] We're told that all of the following figures have the same height. All of the figures except for B have square bases. So that's a square base, that's a square, that's a square, and that's a square. All of the figures except for C are prisms. Yeah, C is a pyramid right over here. All of the figures except for D are right. You can see D right over here is a little bit skewed, or you can view it as oblique. All of the figures except for E have the same base area. The base of figure E is a dilation of the base of figure A by a scale factor of 1.5.

All right, so it tells a figure A has a volume of 28 cubic centimeters. What are the volumes of the other figures? So I'll pause this video and see if you can have a go with that. All right, now let's work through this together. Now they're telling us about the bases and the heights that a lot of these have the same base area, figure E's going to be different. And they also tell us they all have the same height.

So one way to think about volume is it's going to deal with base and height. And so for figure A, it's pretty straight forward. If we call this area right over here, let's call that b, for the area of the base, and then it has some height, h, right over here. We know that the base area times the height is going to be the volume. So we can say that based on figure A, base times height is going to be equal to 28 cubic centimeters. Fair enough.

Now what's going on over here with figure B? Well, it's a cylinder. Now for a cylinder, what is the volume of a cylinder? Well, it, too, is going to be base times height. So it's going to be the area of the base times the height. And if you're wondering, "How is that possible that it's the same as a volume of a rectangular prism over here?" It's actually Cavalieri's principle. If they have the same height and if at any point on that height, they have the same cross-sectional area, then you're going to have the same volume.

So this volume is also going to be base times height. So let me just say this is figure A, figure B right over here. Let me draw those dots a little better, these colons a little bit better. Figure B, the volume is also going to be base times height, which is equal to 28 cubic centimeters. Let me make that clear. That's the volume's equals to that. Volume is equal to that.

Now what about for figure C? What is the volume going to be, what is the formula for the volume of a pyramid? And we've gotten the intuition and proven this to ourselves in other videos. Well, we know that for pyramid, the volume is going to be equal to 1/3 times base times height. And we know that it has the same base area as these other characters here, it has the same height. And so we know what base times height is. It's 28 cubic centimeters. So this is going to be 1/3 times 28 cubic centimeters.

So this is going to be equal to 1/3 times 28 cubic centimeters, which we could rewrite as 28 over three cubic centimeters. You could also write that as nine and 1/3 cubic centimeters. So that's for figure C. Now let's think about figure D. I'll do that right over here. Well, for this oblique prism, I guess we could say, you're going to have the same idea that comes from Cavalieri's principle again.

It's going to have the same formula for volume as figure A. It's going to be the base times the height right over here. So I could write volume is going to be equal to base times height and we already know what that is. They tell us. The base times the height is going to be the same as figure A. It's going to be 28 cubic centimeters.

Now let's go to figure E. This is an interesting one 'cause it has a different base area. What is gonna be the area right over here? Well, they tell us that the base of figure E is a dilation of the base of figure A by a scale factor of 1.5. And these are both squares. So figure A, we'll say, x by x. This one over here is going to be 1.5x by 1.5x.

So let me write that down. 1.5x times 1.5x. Or another way to think about it, let me do it over here where I have some free space. We know that b, which we know is an area of figure A, that would be equal to x times x. Now what's the area of the base of figure E? Well, it's going to be 1.5x times 1.5x or 1.5x squared, which is the same thing as 1.5 squared is 2.25x squared, and we know x squared or x times x that is equal to b. That is equal to our original base area in all of these other figures.

So the area over here, this area right over here is going to be 2.25 times b. 2.25 times b. Now that wasn't so easy to read. Let me write that a little bit clearer. So 2.25b is the base area right over here. And so what's the volume of this figure? The volume is going to be the area of the base, which is 2.25 times the area of all these other figures' bases times the height, which is the same, times h.

Now we know what base times, we know what b times h is. Where b is the area of figure, the base area of figure A. We know that b times h is 28 cubic centimeters. So the volume for figure E is going to be 2.25 times 28 cubic centimeters, times 28 cubic centimeters. And I don't have a calculator here in front of me and I can do it by hand, but I think you get the general point. You just have to multiply 2.25 times 28 to get the cubic, you get the volume of figure E. And that's because its base has been scaled in each dimension by 1.5.

More Articles

View All
When disaster strikes: Explorer Albert Lin nearly gets crushed by falling boulder
Oh my God. [bleep] [bleep] Are you alright there? Are you okay? Please, can you bring me that first aid kit immediately. [bleep] That was terrifying. [bleep] Hell, that was [bleep] terrifying. Pardon my French. Holy [bleep]. [bleep] That was- That was a h…
Gamma decay | Physics | Khan Academy
If there’s a tumor deep inside the brain, how do you get rid of it without damaging the healthy tissues? One way is using a procedure called gamma knife radiosurgery. What’s funny about this is it neither uses a knife nor is it a surgery. Instead, it uses…
Work For Future Generations | Continent 7: Antarctica
[Music] When I’m down in Antarctica and I see our team working, and I see our scientists who are devoting their lives to understanding the changing world based on what’s happening in Antarctica, my comfort is that there are generations after me that will …
The Bull Market Of 2022 | Did We Just Hit Bottom?
What’s up guys, it’s Graham here. So, I had another video that was scheduled to post today, but with the current state of the market combined with the absolute annihilation of some of the largest companies in existence, I thought it would be more importan…
You Have to Protect Your House! | Life Below Zero
You don’t know when something unique is going to happen out here, but you better be on your toes. There he is, he’s on top of my Ridge now. After a brief stay in Dead Horse, SE has returned home to find a Wolverine lurking around CIC’s perimeter. To prot…
Making Physical Retail as Easy as Opening an Online Store - Ali Kriegsman and Alana Branston
So there were a bunch of questions about you guys, kind of like pre-YC. I think maybe the easiest way to do this is to flow through from there. Before you guys were in YC and then fellowship and then Corps, and then now. So going all the way back, Phil Th…