yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Warren Buffett:The upcoming stock market collapse?
Warren Buffett’s favorite stock market indicator is flashing warning signs. Warren Buffett’s called The Oracle of Omaha for good reason, and it is not just pure intuition. He coined a certain metric called the Buffett indicator, and he has even gone as fa…
Planar motion (with integrals) | Applications of definite integrals | AP Calculus BC | Khan Academy
A particle moving in the xy-plane has a velocity vector given by (v(t)). It just means that the x component of velocity as a function of time is (\frac{1}{t} + 7), and the y component of velocity as a function of time is (t^4) for time (t \geq 0). At (t …
Forming comparative and superlative modifiers | The parts of speech | Grammar | Khan Academy
Hey Garian, so last time we talked about Raul the Penguin and how he was happier than another penguin, Cesar. Um, but I want to talk today about how to form the comparative and the superlative. You know how to compare, how to say something is more than or…
Ooshma Garg: What are some of the challenges you face as the CEO of your startup?
Okay, um, in the beginning one of the highs is just that you’re constantly innovating. Like, that 24⁄7 maker time is very precious to me. My contrast now, my day is like full of meetings. It’s like meetings, meetings, meetings, meetings, and then dinners.…
Nuclear Energy Explained: How does it work? 1/3
Have you ever been in an argument about nuclear power? We have, and we found it frustrating and confusing, so let’s try and get to grips with this topic. It all started in the 1940s. After the shock and horror of the war and the use of the atomic bomb, n…
Night Time in the City From a Bugs POV | A Real Bug's Life | National Geographic
When the night shift begins, it’s time for those hustlers and stalkers to come out and play. Gotta find a safe place to sleep. Good thing he always carries a silk sleeping bag. Just find a place to sling it up, and he’s snug as a bug in a— Oh, come on, m…