yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Resources and population growth | Interactions in ecosystems | Middle school biology | Khan Academy
So we have a picture here of these animals at a watering hole, and my question to you is: why don’t we see more animals? There’s clearly enough space for more animals, and we also know that if we focus on any one of these populations, say zebra, that ever…
Secant line with arbitrary difference (with simplification) | AP Calculus AB | Khan Academy
A secant line intersects the curve ( y ) is equal to ( 2x^2 + 1 ) at two points with ( x ) coordinates ( 4 ) and ( 4 + h ), where ( h ) does not equal zero. What is the slope of the secant line in terms of ( h )? Your answer must be fully expanded and sim…
What If You Just Keep Digging?
If you’ve ever thought, “What if I just dug a really, really deep hole?”, that’s what the USSR did right here! That hole is deeper than the deepest part of the ocean. It’s deeper than Mount Everest is tall. They started digging it in the 1970s as part of …
Spouts of Hope | Chasing Genius | National Geographic
I turned 19 that summer in Uganda, so I had a chance to work for a consulting firm after graduation and make lots of money. But I knew that this is where I [Music] belonged. I came to Uganda in 2010 to teach at an all-girls academy, and I was living with …
9 Japanese Philosophies to Become Self-Disciplined and Stop Procrastinating
Have you ever struggled with procrastination or finding the motivation to get things done, feeling like you’re not living up to your own expectations? I won’t lie. I struggle with procrastination a lot, and it’s a challenge, especially when I have importa…
What's in Bill Gates' $47 Billion Stock Portfolio?
Bill Gates, the internet sensation. You might know him as the guy that jumped over a chair or the guy that has no idea what the price of groceries are. Or you might know him as the genius co-founder of Microsoft and the world’s seventh richest man, just b…