yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Isolation - Mind Field (Ep 1)
[Music] Imagine being confined to a 10 by 10 foot room in complete isolation. No timekeeping devices, no phones, no books, nothing to write on, no windows. [Music] Psychologists say that fewer than three days in a room like this can lead to brain damage. …
Dealing cards with functions | Intro to CS - Python | Khan Academy
Let’s design a program with functions and nested function calls. We want to build a program that lets the user play several different car games. That means every game is going to need to share functionality for dealing a deck of playing cards. The first …
Miyamoto Musashi | A Life of Ultimate Focus
Miyamoto Musashi is one of the most legendary samurai and famed as Japan’s greatest swordsman—undefeated in more than sixty duels. After he escaped death during the Battle of Sekigahara, Musashi became a ronin. Aside from being a swordsman, he was also a …
The Harsh Bottom of the World | Continent 7: Antarctica
I think it’s important for people to know about what’s happening in Antarctica, not only just that the science that goes on down there, but what that science is actually trying to tell us about the future of this planet. Most of the research is really foc…
How to become powerful
Let me ask you a question. Have you ever felt powerful? And if so, when was the last time you felt truly powerful, like your steps have extra weight to them? You have a steely-eyed focus. The decisions that you make have clarity. Obviously, it’s impossibl…
Breaking apart 2-digit addition problems | Addition and subtraction | 1st grade | Khan Academy
Let’s think about ways to break up addition problems. And this is useful because if we break them up in the right way, it might be easier for us to actually compute the addition. So let’s look at this first question. Lindsay isn’t sure how to add 39 plu…