yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Ray Dalio & Bill Belichick on Going from Nothing to Something Big: Part 2
And then communicating well, because when I went from the 67 who knew me and knew where I was coming from, and then I had to go to another level, how was I going to keep that same communication, that same idea of meritocracy? That’s why I started to write…
Zeros of polynomials introduction | Polynomial graphs | Algebra 2 | Khan Academy
Let’s say that we have a polynomial ( p ) of ( x ) and we can factor it. We can put it in the form ( (x - 1)(x + 2)(x - 3)(x + 4) ). What we are concerned with are the zeros of this polynomial. You might say, “What is a zero of a polynomial?” Well, those …
LIFE-CHANGING LESSONS: MARCUS AURELIUS' GUIDE TO INNER PEACE AND STRENGTH | STOICISM INSIGHTS
Welcome back to Stoicism Insights, the go-to place for wisdom, inspiration, and personal growth. Today, we have a captivating journey ahead as we delve into the timeless teachings of Marcus Aurelius, the great Roman Emperor and philosopher. In this video,…
Why Military Veterans Are Turning to Archaeology | National Geographic
Most people think of archaeology as telling us about the past. What we’re trying to do is actually use archaeology to improve people’s lives in the present. In this particular program, we’re aiming that specifically at military veterans and trying to use …
These Faces Are The Same Color!
Akiyoshi Kok’s newest illusion is blowing my mind. You’ve got a white face and a black face. Psych! They are both the exact same gray. The face on top appears to be illuminated by a dimmer light source than the one below. So before putting anything into …
Hinduism Introduction: Core ideas of Brahman, Atman, Samsara and Moksha | History | Khan Academy
We’re now going to talk about Hinduism, which is one of the largest religions on Earth, practiced by over a billion people. It’s interesting for several reasons. First, it is considered to be one of the oldest religions that is still practiced. Some histo…