yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Generalizabilty of survey results example | AP Statistics | Khan Academy
Niketi took a random sample of 10 countries to study fertility rate and life expectancy. She noticed a strong negative linear relationship between those variables in the sample data. Here is computer output from a least squares regression analysis for usi…
David Deutsch: Knowledge Creation and The Human Race, Part 2
One of the things that is counter-intuitive and one of the misconceptions that I see crop up out there in academia and intellectual circles is that people think that there’s a final theory. That what we’re trying to achieve is a bucket full of theories th…
How Eating Venomous Lionfish Helps the Environment | National Geographic
Fortunately, lion fish is an invasive species that actually tastes good. On a weekly basis, I’m getting calls from a number of places throughout the country, really asking when the next time is we’re going out to go hunt lion fish, cuz they need fish for …
"The MILLIONAIRE Investing Advice For EVERYONE" | Kevin O'Leary
I say start small, start small! Dip your toe in the water, see how it works, get a feel for it. So why are people not investing? They’re scared, disciplined, scared! Evan, no, they’re scared. But it troubles me immensely now to realize that there’s a hund…
Change in demand versus change in quantity demanded | AP Macroeconomics | Khan Academy
What we’re going to do in this video is a deep dive into the difference between demand and quantity demanded. In particular, we’re going to focus on change in demand versus change in quantity demanded. And so just as context, I have price versus quantity…
Enthalpy and phase changes | Thermodynamics | AP Chemistry | Khan Academy
[Instructor] Let’s say that we have some solid water or ice, and we want to melt the ice and turn the solid water into liquid water. This phase change of solid water to liquid water is called melting, and it takes positive 6.01 kilojoules per one mole to …