yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Thanks to Shrimp, These Waters Stay Fresh and Clean | Short Film Showcase
[Music] The first time I saw it, I couldn’t believe it. I mean, it was like the Fawn; it was completely different than anything I’d seen before. When you get eight or ten species all in a small pool still coexisting, and they’re all shrimp or crabs, it’s …
Differentiability and continuity | Derivatives introduction | AP Calculus AB | Khan Academy
What we’re going to do in this video is explore the notion of differentiability at a point. That is just a fancy way of saying, does the function have a defined derivative at a point? So let’s just remind ourselves of a definition of a derivative. There …
15 Traits Of A STRONG PERSON
Strong people are valuable assets in any space, but it takes a lot of work to be one. Becoming a strong person is not something we’re born with or something that happens in a day; it’s built over time. There are certain characteristics these people share,…
Journey Through the Largest Cave in the World | Expedition Raw
We started our two-day journey through the jungle toward the world’s largest cave. We’re here to photograph this cave in 360-degree images. You know we have to descend into vast empty darkness. I have a cold sensation along my spine, feeling like, how on …
Counting by tens | Counting | Early Math | Khan Academy
So we are told, let’s count by tens, and we go 10, 20, blank, 40, 50, 60, 70, 80, 90, 000. What number did we miss? Pause the video. What number did we miss right over here? Well, if we’re counting by tens, we would go 10, 20, 30, 40, 50, 60, 70, 80, 90, …
Worked example: Merging definite integrals over adjacent intervals | AP Calculus AB | Khan Academy
What we have here is a graph of y is equal to f of x, and these numbers are the areas of these shaded regions. These regions are between our curve and the x-axis. What we’re going to do in this video is do some examples of evaluating definite integrals us…