yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
The Brightest Part of a Shadow is in the Middle
Where is the darkest part of a shadow? I mean, the obvious answer seems to be right in the middle. If you look closely at a shadow, as you move the object away from the wall, you notice that the shadow gets a bit fuzzy. So clearly, the edges are lighter. …
Winter’s White Gold | Port Protection
Growing up out in this part of the world, virtually all the old-timers put up their fish in jars or cans. My uncle had a tin can, or my dad’s mom had a tin can for quite a while. There was a way of life back then; we gave it a little bit of olive oil to t…
The Soul of Music: Exploring Chief Xian’s Ancestral Memory | Overheard at National Geographic
Foreign Douglas, I’m a producer here at Overheard, and this is part three of our four-part series focusing on music exploration and black history. It’s called “The Soul of Music.” National Geographic explorers will be sitting down with some of our favorit…
She Dances With 10,000 Bees on Her Body | National Geographic
For me, wearing the Beast, it’s about communing with another species. I have talked to so many people about fear and bees, and they tell me how they were chased when they were kids because they’d see me wearing the bees. I think that they realize that you…
More Lies About the World You Believe
So you’re 11 years old. You’ve just scarfed down some mac and cheese and birthday cake. You and your friends run wildly, eager to jump in the pristine blue pool on a hot summer day. And then your mom stops you, saying, “No swimming yet! Wait 30 minutes!” …
Taking and visualizing powers of a complex number | Precalculus | Khan Academy
We’re told to consider the complex number ( z ) is equal to negative one plus ( i ) times the square root of three. Find ( z ) to the fourth in polar and rectangular form. So pause this video and see if you can figure that out. All right, now let’s work …