yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
Indifference curves and marginal rate of substitution | Microeconomics | Khan Academy
In this video, we’re going to explore the idea of an indifference curve. Indifference curve, and what it is, it describes all of the points, all the combinations of things to which I am indifferent. In the past, we’ve thought about maximizing total utilit…
Methods for preparing buffers | Acids and bases | AP Chemistry | Khan Academy
Let’s look at two different methods for preparing buffer solutions. In the first method, we’re going to add an aqueous solution of a strong base, sodium hydroxide, to an aqueous solution of a weak acid, acetic acid. Our goal is to calculate the pH of the…
Good Explanations Are Hard to Vary
Brett, would you say that a scientific theory is a subset of a good explanation? Yes, they’re the testable kinds of good explanations. Falsifiable theories are actually a dime a dozen. This doesn’t tell you anything about the quality of the explanation yo…
When you stop trying, it happens | The psychology of the flow state
We often hear of remarkable people who, through dedication and practice, seem to become one with their craft. An example of such a person is Tsao-fu, a character from Taoist literature who wished to become a skilled charioteer. So, he seized the opportuni…
Assignment: Reflections | National Geographic
[Music] Assignment inspiration is a unique opportunity for free photographers to join National Geographic and seek new adventures. What’s exciting is we get to find new talent in three days. One of you will be selected to go on assignment with National Ge…
Magic Without Lies | Cosmos: Possible Worlds
In the quantum universe, there’s an undiscovered frontier where the laws of our world give way to the ones that apply on the tiniest scale we know. They’re divorced from our everyday experience. How can you think about a world that has different rules tha…