yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

We Can’t Prove Most Theorems with Known Physics


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

The overwhelming majority of theorems in mathematics are theorems that we cannot possibly prove. This is Girdle's theorem, and it also comes out of Turing's proof of what is and is not computable. These things that are not computable vastly outnumber the things that are computable, and what is computable depends entirely upon what computers we can make in this physical universe.

The computers that we can make must obey our laws of physics. If the laws of physics were different, then we'd be able to prove different sorts of mathematics. This is another part of the mathematician's misconception: they think they can get outside of the laws of physics. However, their brain is just a physical computer. Their brain must obey the laws of physics.

If they existed in a universe with different laws of physics, then they could prove different theorems. But we exist in the universe that we're in, and so we're bound by a whole bunch of things, not least of which is the finite speed of light. So there could be certain things out there in abstract space which we would be able to come to a more full understanding of if we could get outside of the restrictions of the laws of physics here.

Happily, none of those theorems that we cannot prove at the moment are inherently interesting. Some things can be inherently boring; namely, all of these theorems which we cannot possibly prove as true or false. Those theorems can't have any bearing in our physical universe. They have nothing to do with our physical universe, and this is why we say they're inherently uninteresting. There's a lot of inherently uninteresting things...

More Articles

View All
This just cost me $100,000 ...
What’s up you guys? It’s Graham here. So, it’s been about two weeks since I posted an update on the status of the home renovation, and yeah, geez! This is the episode that I’m sure everyone has been waiting for. Remember how I mentioned in the first vide…
The Middle colonies | Period 2: 1607-1754 | AP US History | Khan Academy
Over the course of the 1600s, the English continued to settle along the eastern seaboard of North America. Now, we’ve already talked about the settlements at Virginia and those of Massachusetts, and a little bit about the settlement of New York, which was…
Khan Academy Ed Talks featuring Asst. Supt. Beth Gonzalez - Thursday, Dec. 17
Hi everyone! Sal here from Khan Academy. Welcome to the Ed Talks live stream subset of the Homeroom. We have a very exciting conversation with Beth Gonzalez, Assistant Superintendent of Detroit Public Schools. So, start thinking of questions for Beth, and…
How Lawn Mower Blades Cut Grass (at 50,000 FRAMES PER SECOND) - Smarter Every Day 196
Hey, it’s me Destin. Welcome back to Smarter Every Day. If you’re like me, you’ve spent a ton of your life on a lawn mower, and you’ve been thinking about how the blade interacts with the blades of grass. So today on Smarter Every Day, we’re going to look…
Your Top Questions Answered: Part 1
What should you do if you want to be very successful and have a very, very big impact on the world? Make your work and your passion the same thing. Don’t forget about the money part, but do it in a way that you’re going to, uh, produce enough money that y…
Continuity over an interval | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is explore continuity over an interval. But to do that, let’s refresh our memory about continuity at a point. So we say that ( f ) is continuous when ( x ) is equal to ( c ) if and only if, so I’m going to make these t…