yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Curvature of a cycloid


3m read
·Nov 11, 2024

So let's do another curvature example. This time, I'll just take a two-dimensional curve, so it'll have two different components: x of t and y of t. The specific components here will be t minus the sine of t, t minus sine of t, and then one minus cosine of t, one minus cosine of t.

This is actually the curve. If you watch the very first video that I did about curvature introducing it, this is that curve. This is the curve that I said: imagine that it's a road, and you're driving along it. If your steering wheel gets stuck, you know you're thinking of the circle that you trace out as a result. At various different points, you're going to be turning at various different amounts. So the circle that your car ends up tracing out would be of varying sizes. If the curvature is high, if you're steering a lot, radius of curvature is low, and things like that.

So here, let's actually compute it. In the last example, I walked through thinking in terms of the derivative of the unit tangent vector with respect to arc length, but in this case, instead of doing that, I just want to show what it looks like when we take the explicit formula that looks like x prime times y double prime minus y prime times x double prime, and then all of that divided by x prime squared plus y prime squared, and I'm writing x prime and y prime and such, and all of these you should think of as taking in the variable t. I'm just being a little too lazy to write it, and you take that to the three halves power.

So this was a formula, and I'm not a huge fan of like memorizing formulas and then hoping to apply them later. I really do think the one thing you should take away from curvature is the idea that it's the derivative of the unit tangent vector with respect to arc length. If you need to, you can just look up a formula like this, but it's worth pointing out that it makes some things easier to compute.

Finding the tangent vector and everything can be kind of like reinventing the wheel when you already have the result here. So the first thing to do is just find x prime, y double prime, y prime, and x double prime, so let's go ahead and write those out. The first derivative of x of t, if we go up here, that's t minus sine of t, so its derivative is 1 minus cosine of t.

The derivative of the y component of 1 minus cosine t, y prime of t, is going to be derivative of cosine, which is negative sine, so negative derivative of that is sine, and that one goes to a constant. Then, when we take the second derivatives of those guys, maybe change the color for the second derivative here.

x double prime of t: so now we're taking the derivative of this, which actually we just did because by coincidence, the first derivative of x is also the y component, so that also equals sine of t. Then y double prime is just the derivative of sine here, so that's just going to be cosine, cosine of t.

So now, when we just plug those four values in for kappa for our curvature, what we get is x prime was 1 minus cosine of t multiplied by y double prime is cosine of t. We subtract off from that y prime, which is sine of t, multiplied by x double prime.

So x double prime is also sine of t, so I could just say sine of t squared, and the whole thing is divided by x prime squared. So x prime was 1 minus cosine of t squared plus y prime squared. So y prime was just sine, so that's just going to be sine squared of t, and that whole thing to the power three halves, and that's your answer, right?

That you apply the formula, you get the answer. So for example, when I was drawing this curve and kind of telling the computer to draw out the appropriate circle, I didn't go through the entire "find the unit tangent vector, differentiate it with respect to arc length" process, even though that's, you know, decently easy to do in the case of things like circles or helixes. But instead, I just went to that formula, I looked it up because I had forgotten, and I found the radius of curvature that way.

More Articles

View All
$1000 Per Month For EVERYONE | New Stimulus Explained
What’s up guys, it’s Graham here. So lately, there’s definitely been a lot of talking discussion about the upcoming stimulus packages. After all, it’s the closest that we can get to receiving free money. Almost 20% of the United States is now out of work,…
Shelter From a Snowstorm | Primal Survivor
MAN (VOICEOVER): But even here, there’s no escape from the storm. I have to get out of this freezing wind. Best I can do is just find a quick shelter behind the wind shadow of these trees. [wind howling] I dig down through the snow at the base of a spru…
15 Things Emotionally Intelligent People Don't Do
Hey there, relaxer! We’re starting off today with a little bit of an exercise. Think of a loved one. What do you feel now? Think of a difficult situation. Did your emotions change? If the answer to this question was yes, well, you’re at least a little bi…
Letter from a Birmingham Jail | US government and civics | Khan Academy
What we’re going to read together in this video is what has become known as Martin Luther King’s “Letter from a Birmingham Jail,” which he wrote from a jail cell in 1963 after he and several of his associates were arrested in Birmingham, Alabama, as they …
Neutron Stars – The Most Extreme Things that are not Black Holes
Neutron stars are one of the most extreme and violent things in the universe. Giant atomic nuclei, only a few kilometers in diameter, but as massive as stars. And they owe their existence to the death of something majestic. [Intro music] Stars exist beca…
Adding 3-digit numbers (no regrouping) | 2nd grade | Khan Academy
[Voiceover] So I have two numbers here that I wanna add together. The first number is 327, and that means three hundreds. I have a three in the hundreds place. You see them right over here. You see the three hundreds, each of these big squares have a hund…