yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
The Banking Crisis Just Got Worse
US stocks have dropped sharply after new concerns over Germany’s Deutsche Bank. Investors continue to worry about the health of the global banking system. Banking is a nightmare; they can cause a lot of carnage when things go wrong. What’s up, guys? It’s…
Welcome to the Gigafactory | Before the Flood
I mean that fossil fuel industry is the biggest industry in the world. They have more money and more influence than any other sector. So, I mean, do it; the more that they can be sort of popular uprising against that, the better. But I think the scientifi…
Welcome to Earth | Official Trailer - Audio Description | Disney+
A six-part Disney Plus original series. Will Smith steps out of a red SUV. “I’ve got a confession to make,” words appear over a blue and green sphere from National Geographic. “I’ve never climbed a mountain,” Will repels down a volcano. Academy Award nomi…
The Nature of Nature | National Geographic
[Music] Too few can feel. I am the sea and the sea is me. Growing up in Catalonia in the 1970s, every Sunday I would sit in front of la caja tonta, the dumb box, watching my hero, Jack Cousteau. [Music] The exotic places, the daring underwater explorers, …
7 STOIC STRATEGIES TO MASTER YOUR EMOTIONS | STOICISM INSIGHTS
Welcome back to Stoicism Insights. Today, we’re diving into something truly special. Have you ever wondered how ancient Stoic philosophy can guide us through life’s toughest challenges? Well, get ready because we’re about to uncover seven profound Stoic l…
Worked example: alternating series | Series | AP Calculus BC | Khan Academy
What are all positive values of P such that the series converges? So let’s see, we have the sum from n equal 1 to infinity of ((-1)^{n + 1} \frac{p}{6^{n}}). There’s a couple of things that might jump out at you. This ((-1)^{n + 1}) as (n) goes from 1 t…