yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
How do Cashews Grow?? - Smarter Every Day 44
Hey, it’s me Destin, welcome to Smarter Every Day. Have you ever just sat down and taken a really close look at nuts? I’ve been doing that for the last few minutes, and I’ve come up with some pretty interesting observations. I mean, cashews and peanuts ha…
How to Simplify Your Life | Minimalist Philosophy
Transcendentalist philosopher Henry David Thoreau argued that, for humans, simplicity is the law of nature. We thrive in simplicity: it’s an optimal state free of clutter and without unnecessary weight. When our lives are simple, it’s easier to see where …
What The Most Carefree Philosopher Can Teach Us | ZHUANGZI
Many centuries ago, a curious Taoist philosopher named Zhuangzi sat by the riverbank, absorbed in the gentle flow of the water, as his fishing rod lay nearby. Unexpectedly, two vice-chancellors appeared before him, having been dispatched by the Prince of …
Chain rule | Derivative rules | AP Calculus AB | Khan Academy
What we’re going to go over in this video is one of the core principles in calculus, and you’re going to use it any time you take the derivative of anything even reasonably complex. It’s called the chain rule. When you’re first exposed to it, it can seem …
Answering Presuppositionalism: Extra Credit
Presupposition lists hold that a theistic worldview is the only one that can account for knowledge. In particular, they claim that atheists cannot justify their use of inductive reasoning, while God provides a firm epistemological basis; in other words, a…
Worked example: separable differential equations | AP Calculus AB | Khan Academy
What we’re going to do in this video is get some practice finding general solutions to separable differential equations. So, let’s say that I had the differential equation Dy/Dx, the derivative of y with respect to X, is equal to e^X over y. See if you c…