yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
Delicious Food in TOKYO VLOG
Hi guys, I’m Duty. I’m back with another Japan vlog because you guys seem to like them. We had a flight from Japan to Turkey, so we had to get PCR tested. Here’s us on our way to the lab that we’re gonna get tested. What I like about Japanese transportat…
Jamming with Astronaut Chris Hadfield
Can I just ask you a question? Because we saw your guitar floating around in space there. What happened to that guitar? Where is it? Because that is a remarkable and unique guitar. It’s a Canadian guitar made by Larry Vay by John Larry Veo in Vancouver. …
Fishin' Frenzy Makes Their Own Path | Wicked Tuna: Outer Banks
[Music] Where are the fish, man? See anything spectacular? I see a lot of water, see a lot of other boats. Yeah, there’s no tuna though. The spot we’re at was hot the last couple days, but apparently it’s all dried up. It makes it extremely difficult for…
McDonald v. Chicago | National Constitution Center | Khan Academy
Hi, this is Kim from Khan Academy, and today we’re learning more about McDonald v. Chicago, a 2010 Supreme Court case challenging a handgun ban in the city of Chicago. The question at issue was whether the Fourteenth Amendment’s Due Process or Immunities …
The Obsession of the Modern World | Origins: The Journey of Humankind
In a society filled with human innovation, one invention stands out above them all: the one that has become the obsession of the modern world—money. Money was not just an intervention; it was a mental revolution and created a system of trust. An elaborate…
How Secure is Your Password? And 21 Other DONGs
Hey, Vsauce. Michael here. And are you still doing things in the real world? C’mon, I mean, why flip a coin when you could just flipacoin.com? Every time you refresh the page, it flips again. Of course, there are plenty of other things you can Do Online N…