yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
Infinite limits and asymptotes | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is use the online graphing calculator Desmos and explore the relationship between vertical and horizontal asymptotes and think about how they relate to what we know about limits. So let’s first graph ( \frac{2}{x - 1}…
The ACTUAL Solution to Traffic - A Response to CGP Grey
Hello everyone. This video is a response to CGP Grey’s painful take on traffic. Now, I don’t have an issue with CGP Grey or his content in general, but I do believe that his video entitled “The Simple Solution to Traffic” is wildly misinformed and propag…
The REAL potential of generative AI
You’ve heard of large language models like Chat GPT, Chat GPT, Chat GPT, Chat GPT. They can answer questions, write stories, and even engage in conversation. But if you want to build a business that uses this technology, you’ll need to ask yourself an imp…
Are you here to please others? Well, I’m not.
Imagine waking up on an ordinary morning, only to discover that your reflection in the mirror has become alien, monstrous. Your limbs, once familiar, have morphed into spindly, insect-like protrusions, and a hard, shiny shell covers your flesh. In Franz …
The Most Dangerous Weapon Is Not Nuclear
A breathtaking scientific revolution is taking place – biotechnology has been progressing at stunning speed, giving us the tools to eventually gain control over biology. On the one hand, solving the deadliest diseases while also creating viruses more dang…
Standard deviation of residuals or Root-mean-square error (RMSD)
What we’re going to do in this video is calculate a typical measure of how well the actual data points agree with a model—in this case, a linear model. There are several names for it; we could consider this to be the standard deviation of the residuals, a…