yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
Sam Altman's Method for Clear Thinking
Speaker: No, I’m a huge notetaker. Oh, tell me about that—there’s all these like fancy notebooks in the world, yeah, you don’t want those, um, you definitely want a spiral notebook because one thing that’s important is you can rip Pages out frequently, an…
90-Year-Old Figure Skater Will Warm Your Heart with Her Amazing Talent | Short Film Showcase
It’s easier to skate than walk because you push it. We push with one foot and you stand on the other one. You don’t have to keep moving your feet all the time. But yeah, skating is it. Well, it’s just fun. My name is Yvonne Yvonne Marie Broder’s Talan. I…
How NOT to Invest In Real Estate!!
Lots of you guys! It’s great here. So, when it comes to investing in real estate, just like anything else out there, there is a right way to do it too and a wrong way to do it. And since I have a bajillion videos on my channel already about exactly what y…
Net force | Movement and forces | Middle school physics | Khan Academy
Let’s say that we are in deep space, and there is this asteroid here that, compared to us, is stationary or relative to us is stationary. What we want to do is we want to start to move it. So, what we do is we attach a rocket to one side, and then we igni…
6 Buddhist Reasons To Avoid Alcohol
A weird thing about Western society is the collective acceptance of one of the most dangerous drugs: alcohol. Me personally, I have a passive binge drinking, and I’m happy to say that I drink rarely these days, if not at all. For me, drinking was a gatewa…
Equivalent ratios in similar shapes | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that quadrilateral ABCD is similar to quadrilateral STUV. So what we’re going to do in this video, this isn’t a question; this is just a statement right over here. But what we’re going to do is think about what does similarity mean? What does i…