yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
Choosing the Winners of the 2015 National Geographic Photo Contest | National Geographic
[Music] Connection, energy, artistry, truth, originality, originality, originality. My name is Jesse Wender, and I’m a senior photo editor at National Geographic magazine. An In Varma, I’m a contributing photographer to National Geographic magazine. Davi…
Khan for Educators: Khan Academy's Mission
I’m Sal Khan, founder of the not-for-profit Khan Academy. As you probably know, we have a big mission to provide a free, world-class education for anyone, anywhere. We know that the most important people in that mission are you, the teacher. That’s why, …
Cao Dai's History in Vietnam | The Story of God
[music playing] MORGAN FREEMAN: The Cao Dai religion, an unusual blend of eastern and western faiths, appears to be flourishing in Vietnam. Across the country, there are almost 400 temples. Followers worship openly. But it wasn’t always that way. I’ve be…
The Black Swan Theory
You are a chicken. Yes, you. You look around and sometimes wonder why your owner takes such good care of you. At first, you’re not sure; you’re skeptical. What if he sends you to the slaughterhouse? You’ve never been there, but you know very well none of …
Linear vs. exponential growth: from data (example 2) | High School Math | Khan Academy
The temperature of a glass of warm water after it’s put in a freezer is represented by the following table. So we have time in minutes and then we have the corresponding temperature at different times in minutes. Which model for C of T, the temperature of…
Warren Buffett's Advice for People Who Want to Get Rich
Mr. Buffett, how can I make 30 billion dollars? Start young! Charlie’s always said that the big thing about it is we started building this little snowball on top of a very long hill. So we started at a very early age and rolled the snowball down. And, of…