yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Scaling perimeter and area example 2 | Transformational geometry | Grade 8 (TX) | Khan Academy


2m read
·Nov 10, 2024

We're told quadrilateral A was dilated by a scale factor of 2/3 to create quadrilateral B. Complete the missing measurements in the table below. So like always, pause this video and then we will do this together. Try to do it yourself, and then we'll do it together.

All right, so in previous videos, we talked about if you have a scale factor, perimeter is going to be scaled by the same amount, while area is going to be scaled by the square of that. So perimeter is also going to be scaled by 2/3. So 30 * 2/3… let me write that a little bit neater. So times 2/3 is going to be 20.

Then the 54 is going to be scaled by (2/3) squared. One way to think about it is, you're scaling in each dimension by 2/3, and so when you multiply the two dimensions to get area, you're going to be multiplying by 2/3 twice to get the new scaled area. So what is (2/3) squared? Well, that is the same thing as 4/9. So what is 54 * (4/9)?

That is equal to 54 * (4 over 9). Both 54 and 9 are divisible by 9, so let's divide them both by 9. This becomes 6, and this becomes 1. So we end up with 6 * 4, which is equal to 24, and we're done.

Now to make this very tangible in your head, let's give an example of where this could actually happen. Let's imagine that quadrilateral A, let's say it looked like this, and I think I can eyeball it. Let's say that that dimension is 6, and that dimension is 9. I think that adds up: 6 plus 6 is 12, and 9 plus 9 is 18. So yes, this perimeter is 30, and the area here is actually 54.

So this is actually the example of quadrilateral A over here. And now quadrilateral B, if we're scaling it by 2/3, then all of these dimensions are going to be scaled by 2/3. So quadrilateral B will, instead of having a length of—or height of—6 over here, it's going to have a height of 4, and instead of having a length or width of 9 here, it's going to be 2/3 of that. It's going to be 6.

So the quadrilateral will look like this, and we can verify that the perimeter now is going to be 4 plus 4, which is 8, plus 6, plus 6, which is 12. So it's 8 plus 12, which is 20, and the new area is 6 * 4, which is 24. Now, you didn't have to do this, but I just wanted to make sure you understood why this was happening.

More Articles

View All
Water potential
So right here I have a container of water that is open to the atmosphere. It’s standard atmospheric pressure up here. Let’s just assume that everything in our system—the air and the water, the container—everything is 21 degrees Celsius. Now, our chamber …
Reflections: graph to algebraic rule | Transformational geometry | Grade 8 (TX) | Khan Academy
We’re told that quadrilateral A’B’C’D’ is the image of quadrilateral ABCD after reflection. So we can see ABCD here and A’B’C’D’ right over here. What we want to do is figure out a rule for this transformation. So pause this video and have a go at that by…
Quantum Mechanics: The Uncertainty Within
When I was a kid, I loved science, but I felt as though there was no point in becoming a scientist. Everything was already invented; everything we needed to know had already been discovered. Great! I mean, we had equations to describe all kinds of things—…
The 6 Money Mistakes That Keep You Poor
What’s up guys, it’s Graham here. So here’s the deal: it was recently found that Millennials were more stressed about money than any other generation. They also have more financial regret than any other generation, and over half are said to be reduced to …
Deep Sea Exploration - 360 | Into Water
I have always been fascinated by the search for life. Aliens from outer space come to mind, but I’m inspired by animals in another final frontier: the ocean’s midwater, one of the least explored places on Earth, full of creatures that defy imagination. I…
TROLL LIPS and more! IMG! #51
Violin skulls and the most popular social networks by country. It’s episode 51 of IMG! Our Sun is big, like really, really big. Take a look at this photo of the transit of Venus. Brady Haran pointed this out to me. Venus is pretty big. Almost the size of …