yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining the effects on f(x) = x (multiple transformations) | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told here is a graph of a segment of f of x is equal to x. That's this here, and then they say h of x is equal to 1/3 * f of x minus 5. Graph h. So think about how you would approach this before we do this together.

All right, now I'm going to do this step by step. So before doing all of h of x, first I just want to think about what would 1/3 of f of x look like. Then we're going to think about what happens if we then were to subtract five.

1/3 of f of x, whatever f of x is for a given x, it's just going to be one third of that. So when x is equal to three, instead of f of f of three being three, 1/3 of that would be one. Similarly, f of 0 is 0; 1/3 of that is zero. f of -3 is -3; 1/3 of that is -1.

So what I'm drawing here—what I'm drawing here—and I could put those big endpoints so it looks like a segment. Right over here, this is the graph of 1/3 f of x.

Now, if we want to do 1/3 of f of x minus 5, what we need to now do is shift this graph down by five. So whatever 1/3 f of x is, it's now going to be five less than that. So if we take this point and we shift down one, two, three, four, five, we go down here.

Actually, we scroll down a little bit, and if we were to take this point and we were to shift down one, two, three, four, five—let me scroll down a little bit more so that you could see that. If you shift this point down five, you come right over here.

Now we would shift—actually, do this in another color—it would look like this. So this right over here is the graph of h of x. This is 1/3 f of x minus 5.

Let's do another example. So let's take this step by step, and what I am going to do here is make a little bit of a table. You will eventually realize that this just shifts the graph over. But if we take an x over here, and then we take x minus 3, and then we evaluate what f of x minus 3 is going to be.

Let's say let's do this at x equal 6, 3, and 0, and you might realize in a second why I'm doing those points. When x is 6, x minus 3 is 3, and then f of x minus 3 is going to be the same thing as f of 3, which is equal to 3.

So for this part right over here, if I just want to graph f of x minus 3 when x equals 6, it is equal to 3. By the same logic, when x is 3, x minus 3 is 0; f of x minus 3 is going to be the same thing as f of 0, which is equal to 0.

So when x is equal to 3, f of x minus 3 is equal to 0. You can see that when you subtract a number here from within the function, we're not subtracting it from the function; we're subtracting it from x before it's input into the function.

It's actually shifting us to the right by three. To verify that, we could try when x is 0; x minus 3 is -3, and so f of x minus 3 is the same thing as f of -3, which is equal to -3.

So when x is equal to 0, f of x minus 3 is equal to -3. So it would look like this—just this part. f of x minus 3. Let me write that. That's f of x minus 3; it shifted us to the right by three.

Now let's just think about what that is if we were to multiply it by -2. Well, there we're just going to scale all of these values by -2. So when x is 6, if we were getting to 3 before, well, you multiply that by -2; you're now going to be at -6.

So instead of that point, we're now going to be at -6. Let's take this point over here—if we were at -3 before and now we are multiplying by -2, we are now going to be at positive 6. So it's going to look like this.

So this right over here is the graph of that segment of -2 * f of x minus 3.

Now let's finish all this up. Let's do the full g of x and add the four. Well, we're just going to shift every point up by four. So this point is going to go from 6 to 10; this point is going to go from -6—shifting it up by four is going to go to -2.

So we are going to have a segment that looks like this, and we're done. This right over here is g of x is equal to -2 * f of x minus 3 + 4, and we're done.

More Articles

View All
Technology and presidential communication | US government and civics | Khan Academy
In this video, we’re going to talk a little bit about how modern technology, like social media, has enhanced the communication power of the presidency. Now, being president has a lot of advantages, but politically, one of those advantages is that as pres…
Worked example: forming a slope field | AP Calculus AB | Khan Academy
In drawing the slope field for the differential equation, the derivative of y with respect to x is equal to y minus 2x. I would place short line segments at select points on the xy-plane. At the point (-1, 1), I would draw a short segment of slope blank.…
Joe Exotic and the Tiger Trade | Trafficked with Mariana van Zeller
[Car horns blaring] [Phone ringing] [Jungle wildlife calls] OPERATOR (THROUGH PHONE): Prepaid call from. JOE EXOTIC (THROUGH PHONE): Joe Exotic. OPERATOR (THROUGH PHONE): An inmate at the Grady County Jail. This call is also subject to being recorded o…
Mapping shapes
We’re told that triangles. Let’s see, we have triangle PQR and triangle ABC are congruent. The side length of each square on the grid is one unit, so each of these is one unit. Which of the following sequences of transformations maps triangle PQR onto tri…
Honey hunting in the dead of night | Primal Survivor: Extreme African Survivor
I definitely would not want to fall from this height. We need to get to the hive out of the branches and lower it down. We’re going to bring it down. We’re going to lower it. This thing is heavy, yeah, I have it. Bees release pheromones when they’re threa…
How I read 100 books a year- 5 tips for reading more
Are you someone who wishes they could read more but just can’t seem to find the time or motivation? I know I used to be. As a kid, I was an avid reader, devouring books left and right. But as I got older and got a smartphone, I found myself spending more …