yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Calculating the amount of product formed from a limiting reactant | Khan Academy


4m read
·Nov 10, 2024

So right here we have a reaction where you can take some carbon monoxide gas and some hydrogen gas, and when they react, you're going to produce methanol. This is actually pretty interesting; methanol has many applications. One of them, it's actually race car fuel. But what we're going to do is study how much methanol we can produce if we have a certain amount of carbon monoxide and molecular hydrogen.

So let's say we have 356 grams of carbon monoxide and 65.0 grams of molecular hydrogen. Pause this video and based on this, figure out how many grams of methanol will we produce. Well, a good place to start is by converting these numbers of carbon monoxide, this amount of carbon oxide, and molecular hydrogen into moles.

To do that, we can take out a periodic table of elements and the molar mass of carbon monoxide. You can look at the molar masses of carbon and oxygen and add them together: 12.01 plus 16, that is going to be 28.01 grams per mole. If we want to convert to moles, we're going to have to multiply this times moles per gram.

For every one mole, we have—we just figured it out—28.01 grams. This is going to be approximately equal to 356 divided by 28.01. Let's see, and we have three significant figures here and four here, so I'll round to 12.7 moles, approximately 12.7 moles.

Then we could do the same thing for the molecular hydrogen. Here, we're going for every one mole; how many grams, or what's our molar mass of our molecular hydrogen? Well, each hydrogen atom is 1.008 grams per mole, but each molecule of hydrogen has two hydrogens in it. So it's going to be two times this, so 2.016 grams per mole or one mole for every 2.016 grams.

This is going to be approximately equal to—get the calculator out again—65 divided by 2.016. That is equal to that, and we have three significant figures, four significant figures, so if I round to three, it's approximately 32.2 moles. So, 32.2 moles.

The first thing to think about is in our reaction: for every one mole of carbon monoxide, we use two moles of molecular hydrogen, and then that produces one mole of methanol right over here. However much carbon monoxide we have, in terms of moles, we need twice as much hydrogen. We see here, molecular hydrogen, and so 2 times 12.7 is going to be 25.4.

So we actually have more than enough molecular hydrogen. We are going to use 25.4 moles of molecular hydrogen. How did I do that? Well, it's going to be twice the number of moles of carbon monoxide, twice this number right over here—this right over here.

We can immediately see how much we're going to have left over: we're going to have left over 32.2 minus 25.4, which is 6.8 moles of molecular hydrogen. And how many moles of methanol are we going to produce? Well, the same number of moles of carbon monoxide that we're using up; it's a one-to-one ratio. So we're going to produce 12.7 moles of methanol.

Let me write that here. If I have 12.7 moles of methanol (CH₃OH), how do I convert this to grams? We'll have to multiply this times a certain number of grams per mole so that we can cancel out the moles or essentially the molar mass of methanol.

To figure out the molar mass of methanol, we'll get our calculator out again. So we have four hydrogens here, so 4 times 1.008 is going to be that. Then to that, we're going to add the molar mass of carbon because we have one carbon (plus 12.01) and then plus one oxygen in that methanol molecule (is equal to that).

Let's see; we will round to the hundredths place because our oxygen and carbon molar masses only went to the hundredths place here, so it's 32.04 grams per mole. We have 12.7 moles times 32.04 grams per mole, which will tell us that we are going to produce that much methanol.

Let's say we have three significant figures, four, so I'll round to three. So approximately 407 grams of methanol (407 grams of CH₃OH). Now, the next question is: what's the mass of hydrogen that we have left over?

We just have to convert our moles of hydrogen that we have left over to grams. 6.8 moles of molecular hydrogen times the molar mass you're in grams per mole is just going to be the reciprocal of this right over here. So, times 2.016.

2.016 is going to give us this right over here, and if we were rounding to two significant figures, which I have right over here, that is going to give us approximately 14 grams—approximately 14 grams of molecular hydrogen is left over. So, we used a good bit of it; we used about 51 grams and we have 14 grams left over. It was carbon monoxide that was actually the limiting reactant here.

More Articles

View All
Is Reality Real? The Simulation Argument
We humans are unable to experience the true nature of the universe, unfiltered. Our senses and brains can only process a fraction of the world. So we have to use concepts and tools to learn about the true nature of reality. Technological progress not only…
ALL IN BITCOIN
What’s up, Graham? It’s guys here. So, I have to say, after hearing story after story about someone turning 17 into six and a half million with Shiba Inu, we’re going all in Dogecoin for a 2.8 million dollar payout or investing a thousand dollars in Bitco…
Charlie Munger: This One Thing Helped Me Become a Billionaire
Warren and I, we never tried to make money out of the dumb, say, out of the stupidity of our dumb buyers. We tried to make money by buying, and if we were selling horse [ __ ], we didn’t want to pretend it was a cure for arthritis. And I think it’s better…
A Napa Valley Nature Walk | National Geographic
Hi! I’m Ashley Kalina, and I’m here in beautiful Napa Valley to talk to you about National Get Outdoors Day. I’m here with National Geographic and our friends at Nature Valley. We’re here to experience the beautiful outdoors. Now, I’m not the expert here…
Introduction to series analyzing income and wealth trends in the US | Khan Academy
Sal Khan here from Khan Academy. What you’re seeing over the next few videos are analyses of charts and data that are put together by The New York Times around trends in wealth, income, and income inequality. Our goal here is to give you extra context, e…
Avoid the NIGHTMARE tenant and eviction: My Tenant screening process
What’s up you guys, it’s Graham here. So, so many of you have requested I make a video about how I properly vet tenants to avoid the nightmare tenant situation where I had an eviction and the tenant was absolutely crazy. So these are a few of the things …