yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Cyrus the Great establishes the Achaemenid Empire | World History | Khan Academy
As we enter into the 6th Century BCE, the dominant power in the region that we now refer to as Iran was the Median Empire. The Median Empire, I’ll draw the rough border right over here, was something like that, and you can see the dominant region of Media…
Renewable Energy 101 | National Geographic
Around the world, renewable energy use is on the rise, and these alternative energy sources could hold the key to combating climate change. What is renewable energy? Renewable energy is generated from sources that naturally replenish themselves and never…
This Video is Worth $13,568.99
Before this video loaded, you probably watched an ad and/or one will appear right about… now. How did this exact ad get on this video? And, what you really want to know, how much money do these things make? Okay, there are three players in this game. Cre…
How I find private jet clients.
This is the interior of our Airbus 319. Wow, it’s an airplane! I built the airplane, which is the same airplane that EasyJet buys around. Of course, we’re seating 12 people in there, seating 212 people. You do meet things in there. So, what we do sometim…
Solve by completing the square: Integer solutions | Algebra I | Khan Academy
So we’re given this equation here. What I want you to do is pause this video and see if you can solve it. What x values satisfy the equation? All right, now let’s work through this together. One technique could be just let’s just try to complete the squa…
Geometric distribution mean and standard deviation | AP Statistics | Khan Academy
So let’s say we’re going to play a game where on each person’s turn they’re going to keep rolling this fair six-sided die until we get a one, and we just want to see how many rolls does it take. So let’s say we define some random variable, let’s call it X…