yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
The Terrifying Real Science Of Avalanches
This is a video about avalanches, what they are, what causes them, how destructive ones can be prevented, and what to do if you’re ever caught in one. To actually feel the force of the avalanche on your body. There’s kind of nothing that can prepare you …
How to learn Japanese FAST? Tips from a native speaker 🇯🇵📚✨🌎✈️
Hi guys, it’s me, Judy. Today we’re going to be talking about how to learn Japanese. Since I’m a native speaker in Japanese, I’m going to be sharing you guys my perspectives as a native speaker, and I’m going to be talking about the mistakes that most of …
Trigonometry review
I want to do a quick overview of trigonometry and the aspects of trig functions that are important to us as electrical engineers. So this isn’t meant to be a full class on trigonometry. If you haven’t had this subject before, this is something that you ca…
Comparing animal and plant cells | Cells and organisms | Middle school biology | Khan Academy
So, let’s play a game of spot the difference. Now, if you were asked to spot the difference between these two pictures, you’d probably laugh and say that’s too easy because it’s obvious that this picture of a lion on the left is nowhere close to looking …
Exploring Ramadan and Earthlike exoplanets | Podcast | Overheard at National Geographic
Foreign exoplanets are planets outside of the solar system, and we know today, for the first time ever with statistical certainty, that there are more planets in the Milky Way galaxy than there are stars. Each star hosts at least one planet. That’s astron…
Gaga Tea FETISH ?? -- IMG! #33
This cat better watch out. And the only thing more badass than guns is kittens. It’s episode 33 of IMG! This is every way Mario can die on one page. And this is a Hadouken manicure. Could you grab me some peanut butter? Oh, but watch out for the honey. Sh…