yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
TALKING BACKWARDS (Backwards Banter Brain Testing) - Smarter Every Day 168
Hey, it’s me, Destin. Welcome back to Smarter Every Day. A while back on the Smarter Every Day subreddit, someone made a post that said something like “no one ever believes that I can talk backwards.” This caught my eye, and I watched the video, and it wa…
Andrew Mason at Startup School SV 2014
That was a really good intro for making it up just then, and it definitely sounded like that, like it was bad in the way jazz is bad. Well, you’re dodging the question of that wonderful music we were just listening to from your album, “Hardly Working.” P…
Shaving Foam | Ingredients With George Zaidan (Episode 3)
[Applause] What’s in here? What’s it do? And can I make it from scratch? It’s a inside ingredients. First things first, these are not shaving cream; they’re actually shaving foam. Shaving cream is more like face cream, and that deserves its own episode a…
This Mistake Cost Me $1 Million!
There you are with your opportunity. You’ve beat the odds, and you don’t know your numbers. Set goals you can achieve, and watch things happen, because people want to work in a winning. It’s like playing for Brady; nobody wants to leave the team. There i…
Paying yourself first | Budgeting and saving | Financial Literacy | Khan Academy
You might have heard the term “paying yourself first,” and this just means putting your safety, your needs, especially your future needs, first before you think about other things. So let’s give ourselves an example. Let’s say that you want to buy a lapt…
Eaten by Jaws and Big Wave Surfing| Edge of the Unknown on Disney+
JUSTINE DUPONT (VOICEOVER): [SPEAKING FRENCH] FRED DAVID: Four years ago, we moved to Nazaré. And we decided to focus on big wave surfing. Every big wave is different. But I think Nazaré is probably the best place to learn how to deal with big waves. MA…