yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Steve Jobs: How a Dreamer Changed the World
We are delivering today the iPad, the new iMac, the iPod, ioto, MacBook Air, iTunes. It’s a revolutionary. He was one of the most creative and daring CEOs, a global icon who shaped the worlds of technology and media for over 30 years. Computers, music, mo…
Ideology and social policy | US government and civics | Khan Academy
In this off-white color, I have a handful of statements that you might hear folks say, especially in the United States. What we’re going to think about is, are these statements that you would typically hear from a liberal? I’m gonna make a little key here…
Value added approach to calculating GDP | AP Macroeconomics | Khan Academy
In previous videos, we talked about GDP as the market value of final goods and services produced in a country in a given time period, let’s say in a given year. We gave the example of producing jeans, where maybe the farmer helps produce the cotton, and t…
Gordon Tries Fermented Fish | Gordon Ramsay: Uncharted
I’ve still got lots to learn, so I’m off to try a traditional Christmas dish that I hear tastes much better than it smells. Now trust me, I want to get the best of Christopher, and I’m up here to meet two guys who make this amazing delicacy that can only …
Psychology of money part 2 | Financial goals | Financial Literacy | Khan Academy
So let’s talk about a few more biases that might creep in when we start thinking about money. One is an anchor bias. Now, an anchor bias is where if initially you think something is worth more, say, and then all of a sudden you find out that it costs less…
Plessy v. Ferguson | The Gilded Age (1865-1898) | US history | Khan Academy
Long before Rosa Parks refused to move to the back of the bus, Homer Plessy boarded a train car in New Orleans to protest Jim Crow segregation laws. Plessy was arrested and convicted in Louisiana, but his test case for segregated public transportation rea…