yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
HOW TO WATCH THE ECLIPSE (AND SHADOW SNAKES) - Smarter Every Day 171
Hey, it’s me Destin, welcome back to Smarter Every Day. We’ve all heard about solar eclipses, right? And you’re probably aware that there’s a huge one coming very soon. So, you think about how to prepare, and you’re thinking maybe I gotta get some special…
Ask Mr. Wonderful #1 | Kevin O'Leary answers your business questions
[Music] So I’m gonna ask your Instagram questions. We’re going to go right down the list. Ready? We’re sitting on the set of Shark Tank Season eleven being taped right now. First question: How long does it take to actually tape a whole season? Well, basi…
Why you must stay positive
You feel down or let down by other people. Things fall apart, but you really can’t let your outer self show that stuff. You have to be able to sort of just rub it off, brush it off your shoulder, man. Move on, because you can’t let negative energy be spre…
Thoughtful Disagreement is the Key to an Innovative and Harmonious Society
The art of thoughtful disagreement is the basis of a very, uh, innovative and also harmonious society. If you want to have an innovative, harmonious society, you have to have the art of thoughtful disagreement. The mediator is a very, uh, important role t…
Are Guitars Worth Investing In? | Walt Grace PT III
People come from all over the world to come here. It’s a destination. You’re not a typical guitar retail store. There’s nothing like this I’ve ever seen. What is this thing in this case? That’s also a Martin. This one is twenty thousand dollars. Uh, yeah,…
Catching Big Tuna | Wicked Tuna | National Geographic
Beginning of the season. We’ve got to try to try something and just prospect a little bit, see what’s where. Go back to one of my old spots here. This is my old chart plotter right here. This is from the old boat. It’s black and white. But all these dots …