yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
My Financial Goals for 2021
Hey guys, welcome back to the channel! In this video, I’m going to be discussing my financial goals for 2021. We’re gonna have a look at kind of how I go about my goal setting. It’s a little bit haphazard, spoiler alert. Also, where I am right now in my j…
Real gases: Deviations from ideal behavior | AP Chemistry | Khan Academy
We’ve already spent some time looking at the ideal gas law and also thinking about scenarios where things might diverge from what at least the ideal gas law might predict. What we’re going to do in this video is dig a little bit deeper into scenarios wher…
Elon Musk Just Abandoned his Twitter Deal... What Next?
It was back on the 4th of April that Elon Musk first announced he was buying 9% of Twitter, a large yet relatively small ownership stake in the company. It was enough to be heard but not necessarily enough to be listened to. And to nobody’s great surprise…
Bill Ackman: The Real Estate Market is "Falling Off a Cliff"
I do think the economy is weakening, and I have some concerns. Billionaire investor Bill Amman just issued a dire warning message on the future of the real estate market and economy. Amman is the founder and CEO of Pershing Square, one of the most well-re…
Reasoning with systems of equations | Systems of equations | Algebra I | Khan Academy
In a previous video, we talked about the notion of equivalence with equations. Equivalence is just this notion that there’s different ways of writing what are equivalent statements in algebra. I could give some simple examples. I could say 2x equals 10 or…
Determining the effects on f(x) = x when replaced by f(x) + d or f(x - c) | Khan Academy
We’re told here is a graph of a segment of f of x is equal to x. That’s this graph right over here. And they say that g of x is equal to f of x minus 4. Graph g, and we can graph g with this little widget here. Now I would normally ask you to pause this v…