yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Shaping American national identity from 1890 to 1945 | AP US History | Khan Academy
[Instructor] In 1890, the United States was not exactly a major player on the world stage. It was an industrial behemoth, attracting immigrants from all over the world, but it was focused on its own internal growth, not foreign affairs. There was little i…
Khan Academy Ed Talks with Marc Sternberg - Wednesday, March 10
Hello! Welcome everyone to Ed Talks with Khan Academy. I’m Christine DeCervo, the Chief Learning Officer here at Khan Academy, and today I’m excited to talk to Mark Steinberg, who is the K-12 Education Program Director at the Walton Family Foundation. So…
Honey hunting in the dead of night | Primal Survivor: Extreme African Survivor
I definitely would not want to fall from this height. We need to get to the hive out of the branches and lower it down. We’re going to bring it down. We’re going to lower it. This thing is heavy, yeah, I have it. Bees release pheromones when they’re threa…
The discovery of the double helix structure of DNA
In 1865, Mendel, often considered the father of modern genetics, comes up with a structured way of thinking about these inheritable factors, which we now call genes. Then, as we go into the early 1900s, his work was rediscovered, and people started to say…
Lorentz transformation derivation part 1 | Special relativity | Physics | Khan Academy
So, in all of our videos on special relativity so far, we’ve had this little thought experiment where I’m floating in space and, right at time equals zero, a friend passes by in her spaceship. She’s traveling in the positive x direction; velocity is equal…
"The ULTIMATE INVESTING ADVICE Everyone NEEDS TO HEAR!" | Kevin O'Leary
She invested in herself in something she really loved that appreciated in value. Innovation is disruption, and so whenever you have a Tesla or somebody that’s trying to change the world, you’re going to piss somebody off. I don’t want to work out today. …