yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Worked example: Rewriting limit of Riemann sum as definite integral | AP Calculus AB | Khan Academy
So we’ve got a Riemann sum. We’re going to take the limit as n approaches infinity, and the goal of this video is to see if we can rewrite this as a definite integral. I encourage you to pause the video and see if you can work through it on your own. So …
Growing Food on Mars | MARS: How to Survive on Mars
[Music] Another thing that we’re going to need when we go to Mars is food. Probably that’s going to mean growing some of your own food. We want to do that not by lugging everything from Earth but by using what’s already on Mars. That includes using the …
Safari Live - Day 59 | National Geographic
Well, sorry about that guys. We unfortunately lost our internet signal, so we are back up and running now. Gremlins are gone, everything is all good. The sun is coming out and there’s wonderful things of foot’s shadow and cover. So, messing around with a…
Worked example: Calculating amounts of reactants and products | AP Chemistry | Khan Academy
We’re told that glucose (C6H12O6) reacts with oxygen to give carbon dioxide and water. What mass of oxygen in grams is required for complete reaction of 25.0 grams of glucose? What masses of carbon dioxide and water in grams are formed? So pause this vid…
Photosynthesis evolution | Cellular energetics | AP Biology | Khan Academy
[Instructor] In this video, we are going to talk about the evolution of photosynthesis on Earth because that’s the only place that, at least so far, we’re aware of photosynthesis occurring. I personally believe that it’s occurring in many places in the un…
Solve by completing the square: Non-integer solutions | Algebra I | Khan Academy
Let’s say we’re told that zero is equal to x squared plus six x plus three. What is an x, or what our x is that would satisfy this equation? Pause this video and try to figure it out. All right, now let’s work through it together. So the first thing that…