yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Extremophiles 101 | National Geographic
[Narrator] Intense heat, freezing cold, high acidity, and radioactivity. These harsh environments don’t seem hospitable for life, but some organisms not only survive but thrive under such extreme conditions. The name extremophile means extreme lover. Th…
Money: Humanity's Biggest Illusion
If I asked you the question, “What is man’s greatest invention?” what would your answer be? There’s a lot of options. Would it be fire because it gives us warmth, protection, and the ability to cook our meals? Or perhaps you would pick the wheel because i…
YC's Summer 2022 Startup Job Expo - Pitches from 30 YC founders & find your next startup
[Music] Thanks for joining us at YC’s Summer 22 Jobs Expo. I’m excited to introduce you to 30 great YC founders who are going to pitch you on why you should join their startup. They’re going to share what they’re passionate about, what they’re building, w…
Mobilizing the Masses | Photographer | National Geographic
People really want to know what it feels like to be a photographer, what it feels like to be sitting there in the stream when a bear comes walking in. I was cold, I was hungry, I was scared, I was excited. And so we started posting those stories, and it …
Definite integral of sine and cosine product
We’re in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it’ll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we…
This is why we can't have nice things
This is a video about things like cars, phones, and light bulbs and an actual conspiracy that made them worse. This video was sponsored by NordVPN, more about them at the end of the video. I am outside Livermore Fire Station, number six. And in here, they…