yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Rediscovering Youth on the Colorado River | Short Film Showcase
[Music] When I was born in the summer of ‘86, my dad wrote me these words: “The important places, child of mine, come as you grow. In youth you will learn the secret places: the cave behind the waterfall, the arms of the oak that hold you high, the stars…
Worked example: analyzing a generic food web | Middle school biology | Khan Academy
What we have here is a diagram of a food web that shows us how matter and energy are transferred between organisms in an ecosystem, but it’s a little bit abstract. They don’t tell us what these organisms are; they just say organism one, organism two, orga…
Homeroom with Sal & Rehema Ellis - Tuesday, December 15
Hi everyone, Sal Khan here from Khan Academy. Welcome to our homeroom live stream! We have a very exciting guest, Rohima Ellis, who is the education correspondent for the NBC Nightly News. But before we get into that, what promises to be a very exciting c…
The Poor Man's Rolex? | Kevin & Teddy Baldassarre Tudor Watches
It’s a bit of a funky look. It is. Well, you have to hand it to Tudor; they’ve really, really focused on great dials, great value. If there was ever a brand that could encroach on a Rolex, it would be Tudor. Absolutely, it’s its own standalone brand. This…
Subject-verb agreement | Syntax | Khan Academy
Hello Grim marians! Today we’re going to talk about subject-verb agreement. What this is, is the idea that you want your subject and your verb to get along in a sentence. What agreement is in grammar is the art of making sure that sentence parts connect w…
how to find out what you want to do in life - watch this if you feel lost
If you’re spending your day scrolling on social media, watching TikToks, Instagram reels, shorts, whatever, if you hate your current job and think, “I wish I had a dream job that I’m passionate about that I can spend hours without even realizing it,” and …