yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Multiplying decimals word problems | Decimal multiplication | Grade 5 (TX TEKS) | Khan Academy
We are told James’ dog weighs 2.6 kg, and How’s dog weighs 3.4 times as much as James’ dog. How much does How’s dog weigh? Pause this video and try to figure that out. Well, How’s dog is 3.4 times the weight of James’s dog, which is 2.6. So we just have …
You Don’t Lose People. You Return Them | Stoic Philosophy
In the Star Wars prequels, we see the romance between Jedi Knight Anakin Skywalker and Queen of Naboo Padmé Amidala and how the overly attached Anakin suffers from an extreme fear of losing Padmé. His attachment and fear are so strong that he’s willing to…
The Next Housing Market Crash (Worse Than 2008)
What’s up, Graham? It’s Guys here, and 2023 is already shaping up to be an absolute mess. Thieves have reportedly stolen 2 million dimes from the back of a van in Philadelphia. A teenager was banned for climbing into and getting stuck in a claw machine. H…
Khanmigo chat history demo | Introducing Khanmigo | Khanmigo for students | Khan Academy
Hey everybody, it’s Dan from the Con Academy team, and today I’ll be showing you all a brief introduction to our chat history feature. So, what is chat history? Well, if you’ve ever been using Kigo, and for whatever reason, maybe you’ve navigated to anot…
Pythons 101 | National Geographic
[Narrator] Almost no other predator on the planet inspires as much terror and curiosity as the python. One of the world’s longest snakes is a python. The reticulated python of Southeast Asia usually grows around 16 feet long. However, the current record h…
Worked example: Using the reaction quotient to predict a pressure change | Khan Academy
A one liter reaction vessel contains 1.2 moles of carbon monoxide, 1.5 moles of hydrogen gas, and 2.0 moles of methanol gas. How will the total pressure change as the system approaches equilibrium at constant temperature? So, our carbon monoxide is react…