yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So let's see if we can find the limit as x approaches negative one of six x squared plus five x minus one.

Now, the first thing that might jump out at you is this right over here. This expression could be used to define the graph of a parabola. When you think about this, I'm not doing a rigorous proof here; a parabola would look something like this.

This would be an upward opening parabola. It looks something like this; this graph visually is continuous. You don't see any jumps or gaps in it. In general, a part of a quadratic like this is going to be defined for all values of x, for all real numbers, and it's going to be continuous for all real numbers.

So, something that is continuous for all real numbers—well then, the limit as x approaches some real number is going to be the same thing as just evaluating the expression at that real number. So what am I saying? I'm just going to say it another way: We know that some function is continuous at some x value, at x equals a, if and only if—that is, if or if if and only if—the limit as x approaches a of f of x is equal to f of a.

So, I didn't do a rigorous proof here, but just it's conceptually not a big jump to say, okay, well this is just a standard quadratic right over here. It's defined for all real numbers and, in fact, it's continuous for all real numbers.

So we know that this expression could define a continuous function, so that means that the limit as x approaches a for this expression is just the same thing as evaluating this expression at a. In this case, our a is negative 1.

So all I have to do is evaluate this at negative 1. This is going to be 6 times negative 1 squared plus 5 times negative 1 minus one. So that's just one. This is negative five. So it's six minus five minus one, which is equal to zero, and we are done.

More Articles

View All
Semicolons and complex lists | The colon and semicolon | Punctuation | Khan Academy
Hello grammarians! So, if you’ve ever written a list of items or actions, you know that we use commas to separate the elements of that list. Sometimes, though, our lists get a bit complicated, and we have something called a complex list. When that’s the …
Startup Experts Share Their Investor Horror Stories
Raising money is a game that you sort of have to figure out. Oftentimes, these meetings can go terribly awry. The worst sort of investor meeting is one that makes you question why you’re even doing a company anymore. Today, we’re talking about our worst i…
Ask Sal Anything! Daily Homeroom Live: Monday, April, 27
Hi everyone! I’m Dan to you from Khan Academy. Unfortunately, after about a month and a half, Sal’s unable to join us today. But you do have myself and another kind of me team member, Megin Pattani, who’s here to kind of hold down the fort while Sal’s awa…
Things to know before buying a home | Housing | Financial Literacy | Khan Academy
Let’s say you’re interested in buying a home, and you have found the house that you want, and it costs $300,000. Let’s think about whether you are ready to purchase that and other things that you might have to consider. A lot of folks realize that if you…
Meeting a Black-Market Marijuana Dealer | Trafficked with Mariana van Zeller
[Music] One of the big players in that world, someone I’m told moves more than a million dollars worth of product daily, has agreed to meet me. Well, kind of. Okay, we ready? So I’m currently in an empty room and in front of a table with nine pounds of a…
How to Become Undefeatable (according to Seneca) | Stoic Philosophy
When Seneca claimed that the wise man is safe from injury, his friend Serenus asked: “What then? Will there be no one who will try to do an injury to the wise man?”. “Yes,” said Seneca, “they will try, but the injury will not reach him.” He argued that th…