yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing functions with exponential decay | Algebra 1 | Khan Academy


3m read
·Nov 10, 2024

We are told a phone sells for six hundred dollars and loses 25% of its value per year. Write a function that gives the phone's value ( v(t) ) so value is a function of time ( t ) years after it is sold. So pause this video and have a go of that before we work through it together.

All right, so let's just think about it a little bit. I could even just set up a table to think about what is going on. So this is ( t ) and this is the value of our phone as a function of ( t ). So it sells for six hundred dollars. So time ( t = 0 ), what is ( v(0) )? Well, it's going to be equal to six hundred dollars. That's what it sells for time ( t = 0 ).

Now, ( t = 1 ), what's going to happen? Well, it says that the phone loses 25% of its value per year. Another way to rewrite it is that it loses 25% of its value per year is that it retains 100% minus 25% of its value per year, or it retains 75% of its value per year. So how much is it going to be worth after one year? Well, it's going to be worth ( 600 \times 0.75 ).

Now what about year two? Well, it's going to be worth what it was in year one times 75% again. So it's going to be ( 600 \times 0.75 \times 0.75 ) and so you could write that as times ( 0.75^2 ). I think you see a pattern. In general, if we have gone, let's just call it ( t ) years, well then the value of our phone if we're saying it in dollars is just going to be ( 600 \times 0.75^t ). So ( v(t) ) is going to be equal to ( 600 \times 0.75^t ), and we're done.

Let's do another example. So here we are told that a biologist has a sample of 6,000 cells. The biologist introduces a virus that kills one third of the cells every week. Write a function that gives the number of cells remaining, which would be ( c(t) ), the cells as a function of time in the sample ( t ) weeks after the virus is introduced. So again pause this video and see if you can figure that out.

All right, so I'll set up another table again. So this is time, it's in weeks, and this is the number of cells ( c ). We could say it's a function of time. So time ( t = 0 ), when zero weeks have gone by, we have six thousand cells. That's pretty clear. Now after one week, how many cells do we have? What's ( c(1) )? Well, it says that the virus kills one-third of the cells every week, which is another way of saying that two-thirds of the cells are able to live for the next week.

So after one week we're going to have ( 6000 \times \frac{2}{3} ). Then after two weeks, or another week goes by, we're gonna have two-thirds of the number that we had after one week. So we're gonna have ( 6000 \times \frac{2}{3} \times \frac{2}{3} ) or we could just write that as ( \left(\frac{2}{3}\right)^{2} ).

Once again, you are likely seeing the pattern here. We are going to at time ( t = 0 ) we have six thousand, and then we're going to multiply by two-thirds however many times, however many weeks have gone by. So the cells as a function of the weeks ( t ), which is in weeks, is going to be our original amount and then however many weeks have gone by we're going to multiply by ( \left(\frac{2}{3}\right)^{t} ) and we're done.

More Articles

View All
Welcome to Washington | Sue in the City
Happy birthday to you! So guess what city I’m in? Washington DC, our nation’s capital. It is the seat of power for the United States of America. Our country may be young, but what a history we have. So join me as the Beast checks out for beauty. There’s …
Decimal multiplication place value
This is an exercise from Khan Academy. It tells us that the product 75 times 61 is equal to 4575. Use the previous fact to evaluate as a decimal this right over here: 7.5 times 0.061. Pause this video and see if you can have a go at it. All right, now le…
Linear approximation of a rational function | Derivative rules | AP Calculus AB | Khan Academy
So there are situations where you have some type of a function. This is clearly a non-linear function. f of x is equal to 1 over x minus 1. This is its graph, or at least part of its graph, right over here. But where you want to approximate it with a line…
Reddit Analysis: Top 10 Coins For Each Year
Reddit users have recently and separately posted their full analysis, cumulatively dating back to 2013, identifying the biggest gainers and losers across 2,000 different cryptocurrencies to find a way to index the entire market that gives you the best cha…
How to be Stoic in a Crisis
When a crisis is upon us, how can we deal with it in a Stoic way? When we look at Stoic literature, we’ll find some good advice that we can apply during times of hardship. Crises come in many different forms. We can have personal crises on a micro level, …
Mean value theorem example: square root function | AP Calculus AB | Khan Academy
Let ( F(x) ) be equal to the ( \sqrt{4x - 3} ), and let ( C ) be the number that satisfies the Mean Value Theorem for ( F ) on the closed interval between 1 and 3, or ( 1 \leq x \leq 3 ). What is ( C )? So, let’s just remind ourselves what it means for (…