yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability with discrete random variable example | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Hugo plans to buy packs of baseball cards until he gets the card of his favorite player, but he only has enough money to buy at most four packs. Suppose that each pack has a probability of 0.2 of containing the card Hugo is hoping for. Let the random variable X be the number of packs of cards Hugo buys.

Here is the probability distribution for X. So it looks like there is a 0.2 probability that he buys one pack, and that makes sense because that first pack has a 0.2 probability that it contains his favorite player's card. If it does, at that point, he'll just stop; he won't buy any more packs.

Now, what about the probability that he buys two packs? Well, over here, they give it a 0.16, and that makes sense. There's a 0.8 probability that he does not get the card he wants on the first one, and then there's another 0.2 that he gets it on the second one. So, 0.8 * 0.2 does indeed equal 0.16. But they're not asking us to calculate that; they give it to us.

Then, the probability that he gets three packs is 0.128, and then they've left blank the probability that he gets four packs. This is the entire discrete probability distribution because Hugo has to stop at four; even if he doesn't get the card he wants, on the fourth pack, he's just going to stop over there.

So we could actually figure out this question mark by just realizing that these four probabilities have to add up to one. But let's just first answer the question: Find the indicated probability. What is the probability that X is greater than or equal to two? What is the probability? Remember, X is the number of packs of cards Hugo buys. I encourage you to pause the video and try to figure it out.

So let's look at the scenarios. We're talking about probability that our discrete random variable X is greater than or equal to two. Well, that's these three scenarios right over here. So what is their combined probability?

Well, you might want to say, "Hey, we need to figure out what the probability of getting exactly four packs is." But we have to remember that these all add up to 100%. And so this right over here is 0.2. Hence, this is 0.2. The other three combined have to add up to 0.8.

0.8 + 0.2 is 1, or 100%. So just like that, we know that this is 0.8. If, for kicks, we wanted to figure out this question mark right over here, we could just say, "Look, they have to add up to one." So we could say the probability of exactly four is going to be equal to 1 - 0.2 - 0.16 - 0.128.

I get 1 - 0.2 - 0.16 - 0.128 is equal to 0.512. 0.512, you might immediately say, "Wait, wait, this seems like a very high probability; there's more than a 50% chance that he buys four packs."

You have to remember he has to stop at four. Even if on the fourth he doesn't get the card he wants, he still has to stop there. So there's a high probability that that's where we end up. There is a little less than a 50% chance that he gets the card he's looking for before that point.

More Articles

View All
Mr. Freeman, part 61 CENSORED
There was a man who was constantly suffering. He was too hot, then too cold. He had too much, then too little. He wanted to scream from joy, then wanted to hide in the corner from angst. The stress was making his heart grow callous, his body deteriorate, …
Inflation Just Hit a 13-Year High and Investors Are Worried
So in the past week, the Federal Reserve has had their little meeting and decided to keep interest rates exactly where they are until their next meeting. So for those that don’t know, the Fed meets eight times per year to discuss monetary policy. With in…
Homeroom with Sal & Randi Weingarten - Tuesday, August 4
Uh hi everyone, welcome to our homeroom live stream. Sal Khan here from Khan Academy. I’m very excited about the very relevant guest we have today, Randy Weingarten, president of the American Federation of Teachers. Before we jump into that conversation, …
Ray Dalio: The COLLAPSE That Will Change a Generation
Ray Dalio is one of the most highly respected names in investing, and someone you need to be paying attention to. As the founder of Bridgewater, the world’s largest and arguably most prestigious hedge fund, he has unique insight into the economy and stock…
Wicked Laugh | Wicked Tuna
There’s your balloon ball! Get that! The wicked pissah team fell apart for a little bit, but now we’re running on all cylinders. We had a great week last week; we had a really good time. We caught two fish through at a time on the pizza. We made 16 grand;…
Ecosystems and biomes | Ecology and natural systems | High school biology | Khan Academy
So just as a bit of a review, if we take the members of a certain species that share the same area, we call that a population. Population, all of the organisms in this particular population will be members of the same species. There could be other member…