yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Probability with discrete random variable example | Random variables | AP Statistics | Khan Academy


2m read
·Nov 11, 2024

Hugo plans to buy packs of baseball cards until he gets the card of his favorite player, but he only has enough money to buy at most four packs. Suppose that each pack has a probability of 0.2 of containing the card Hugo is hoping for. Let the random variable X be the number of packs of cards Hugo buys.

Here is the probability distribution for X. So it looks like there is a 0.2 probability that he buys one pack, and that makes sense because that first pack has a 0.2 probability that it contains his favorite player's card. If it does, at that point, he'll just stop; he won't buy any more packs.

Now, what about the probability that he buys two packs? Well, over here, they give it a 0.16, and that makes sense. There's a 0.8 probability that he does not get the card he wants on the first one, and then there's another 0.2 that he gets it on the second one. So, 0.8 * 0.2 does indeed equal 0.16. But they're not asking us to calculate that; they give it to us.

Then, the probability that he gets three packs is 0.128, and then they've left blank the probability that he gets four packs. This is the entire discrete probability distribution because Hugo has to stop at four; even if he doesn't get the card he wants, on the fourth pack, he's just going to stop over there.

So we could actually figure out this question mark by just realizing that these four probabilities have to add up to one. But let's just first answer the question: Find the indicated probability. What is the probability that X is greater than or equal to two? What is the probability? Remember, X is the number of packs of cards Hugo buys. I encourage you to pause the video and try to figure it out.

So let's look at the scenarios. We're talking about probability that our discrete random variable X is greater than or equal to two. Well, that's these three scenarios right over here. So what is their combined probability?

Well, you might want to say, "Hey, we need to figure out what the probability of getting exactly four packs is." But we have to remember that these all add up to 100%. And so this right over here is 0.2. Hence, this is 0.2. The other three combined have to add up to 0.8.

0.8 + 0.2 is 1, or 100%. So just like that, we know that this is 0.8. If, for kicks, we wanted to figure out this question mark right over here, we could just say, "Look, they have to add up to one." So we could say the probability of exactly four is going to be equal to 1 - 0.2 - 0.16 - 0.128.

I get 1 - 0.2 - 0.16 - 0.128 is equal to 0.512. 0.512, you might immediately say, "Wait, wait, this seems like a very high probability; there's more than a 50% chance that he buys four packs."

You have to remember he has to stop at four. Even if on the fourth he doesn't get the card he wants, he still has to stop there. So there's a high probability that that's where we end up. There is a little less than a 50% chance that he gets the card he's looking for before that point.

More Articles

View All
Breaking Addiction is Socially Unacceptable
If you drink alcohol or if you take some kind of drug regularly, tried to follow any thought experiment. What events do you most look forward to? I will bet you there are the events where you get to do these things. So if you drink alcohol, you look forwa…
Making conclusions in a test about a proportion | AP Statistics | Khan Academy
A public opinion survey investigated whether a majority, more than 50 percent, of adults supported a tax increase to help fund the local school system. A random sample of 200 adults showed that 113 of those sampled supported the tax increase. Researchers …
5 Secrets You Shouldn't Share with Others | STOICISM INSIGHTS #stoicism
Welcome back to Stoicism Insights, your guide to unlocking the timeless wisdom of Stoic philosophy for a more fulfilling life. In this video, I’ll be addressing certain personal matters and situations that are best kept private, things that don’t serve an…
Kirsty Nathoo with Shan-Lyn Ma, Founder of Zola
Okay, hi everybody. I’m Kirsty Nathu. I’m one of the partners at Y Combinator, and it is my great honor to introduce Shanna Lynn, MA, who’s the CEO of Zola. Zola has reinvented the wedding gift registry, and they’ve now worked with hundreds of thousands o…
Safari Live - Day 154 | National Geographic
And caucuses viewer discretion is advised. Hello everyone and a very warm welcome to our sunset safari drive today, all the way from Juma Game Reserve in South Africa. My name is David and with me, Tree on the camera, AC VM. You might wonder what I have b…
What is a Virus? | Breakthrough
Virus is actually just genetic material encased in an envelope, and it actually needs a host like me or you in order for it to infect and continue to produce more copies of itself. So what happens is a virus infects me, let’s say, and my immune system sta…