yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Endosymbiosis theory | Cell structure and function | AP Biology | Khan Academy


3m read
·Nov 11, 2024

When we look inside of eukaryotic cells, we see membrane-bound organelles. Some of these membrane-bound organelles are particularly interesting. For example, here is a diagram of a chloroplast that are found in plant or algal cells. We know that this is where photosynthesis takes place.

But what's really interesting, above and beyond that, is that it seems that chloroplasts have a lot of the machinery necessary for being a prokaryotic cell on its own. We don't see it acting on its own, but it has its own DNA. It has ribosomes, which we know are the site where we go from messenger RNA to protein.

Similarly, another interesting membrane-bound organelle that we see in eukaryotic cells—this would include even animal cells, like the cells in your and my bodies—are mitochondria. Mitochondria are often viewed as the energy factories of eukaryotic cells, where we can leverage oxygen in order to produce ATP. Like chloroplasts, mitochondria have their own DNA; they also have mitochondrial ribosomes.

Here are some diagrams of how mitochondria might look inside of a larger eukaryotic cell. Evolutionary biologists for many decades looked at this and said, "Well, why do these things exist? Why do they almost look like prokaryotic cells on their own?" There are even examples of independent prokaryotic bacteria that live in symbiosis inside of other cells, and they look an awful lot like mitochondria and chloroplasts.

If we fast forward to the 1960s, someone named Lynn Margulis comes on the scene with endosymbiosis theory. Her view is that these membrane-bound organelles, like mitochondria and chloroplasts, if we go deep into our evolutionary past—say, two and a half billion years ago—were actually independent prokaryotic organisms.

These organisms could produce energy aerobically, or using oxygen, and were precursors to what we would consider today to be modern eukaryotic cells. These modern cells might have already had some membrane-bound structures, like a nucleus, and maybe some other things that they could only metabolize anaerobically; they couldn't leverage oxygen.

While these other prokaryotic organisms could leverage oxygen, they could have become symbionts, where the one that could leverage oxygen to produce more energy would get engulfed into the larger cell. That larger cell is able to provide nutrients and protection, while the smaller cell that's engulfed inside of it could better metabolize the nutrients and leverage oxygen to produce more energy.

Over time, this symbiotic relationship became even more connected so that the smaller organism could not operate by itself; it lost some of its DNA that was necessary to act independently. Some of it might have gotten incorporated into the DNA of the larger cell, and those smaller organisms are what eventually evolved into what we consider today to be mitochondria.

This is a fascinating theory, and it's actually been proven out. When Lynn Margulis first published this in the late 1960s, she wasn't taken that seriously.

However, in the decades since, it's been validated as we've looked at the DNA structures of mitochondria and chloroplasts. This actually is the most likely theory of how they emerged in our cells. It's just a fascinating glimpse of evolution in general.

We talk a lot about natural selection and the role of variation in mutations, but Lynn Margulis introduces another idea that could catalyze evolution, and that's that of symbiosis. We see symbiosis throughout the natural world, and her argument is sometimes those symbionts can become so co-dependent on each other that they merge into one organism.

More Articles

View All
Top 5 Stocks the Super Investors Keep Buying!
Well, here we are back again. It’s that time of the year! The first NF filings have been released, so in this video we’re going to look at the top 10, top 10, but really the top five stocks the best investors in the world were buying leading into 2023. Th…
2003 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] We promise not to sing Good Morning, and we’re delighted to have you all here. One of the things that makes it fun to run Berkshire is that we see real shareholders. We probably have a larger proportion of our shares held by individuals and not…
Worked example: Continuity at a point | Limits and continuity | AP Calculus AB | Khan Academy
We have the graph of y is equal to g of x right over here. What I want to do is check which of these statements are actually true and then check them off. Like always, I encourage you to pause the video and see if you can work through this on your own. L…
North Korea in 3D: See Rare Photos of People in the Secret State | Short Film Showcase
[Music] In early 2014, Choreo Studio invited Slovenian photographer Mathias Tan Church to undertake a 3D photography project in North Korea, inspired in part by the country’s own fondness for 3D photography to produce keepsake postcards and public art. Ac…
A Selfish Argument for Making the World a Better Place – Egoistic Altruism
Until recently, the vast majority of the world population worked on farms, and the total production of the world’s economy was mostly the total agricultural output. And this output was limited by the fixed size of the land. The total output of the economy…
These Are the Mental Health Pioneers | Explorer
Do you think the United States is doing enough for the treatment of mental illness? We’re doing a good job, but we really should be doing much better. There are methods of treating we know work, but which aren’t reaching those who really need it. I think…