yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to limits at infinity | Limits and continuity | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

We now have a lot of experience taking limits of a function. So if I'm taking the limit of f of x, we're going to think about what does f of x approach as x approaches some value a. This would be equal to some limit.

Now, everything we've done up till now is where a is a finite value. But when you look at the graph of the function f right over here, you see something interesting happens. As x gets larger and larger, it looks like our function f is getting closer and closer to 2. It looks like we have a horizontal asymptote at y equals 2.

Similarly, as x gets more and more negative, it also seems like we have a horizontal asymptote at y equals 2. So is there some type of notation we can use to think about what is the graph approaching as x gets much larger or as x gets smaller and smaller? The answer there is limits at infinity.

So if we want to think about what is this graph, what is this function approaching as x gets larger and larger, we can think about the limit of f of x as x approaches positive infinity. So that's the notation, and I'm not going to give you the formal definition of this right now. There in future videos we might do that, but it's this idea as x gets larger and larger and larger—does it look like our function is approaching some finite value?

That we have a horizontal asymptote there, and in this situation, it looks like it is. It looks like it's approaching the value 2. For this particular function, the limit of f of x as x approaches negative infinity also looks like it is approaching 2.

This is not always going to be the same. You could have a situation—maybe we had—you could have another function. So let me draw a little horizontal asymptote right over here. You could imagine a function that looks like this. So I'm going to do it like that, and maybe does something wacky like this, and it comes down and it does something like this.

Here, our limit as x approaches infinity is still 2, but our limit as x approaches negative infinity right over here would be negative 2. Of course, there are many situations where, as you approach infinity or negative infinity, you aren't actually approaching some finite value. You don't have a horizontal asymptote, but the whole point of this video is just to make you familiar with this notation.

Limits at infinity, or you could say limits at negative infinity, they have a different formal definition than some of the limits that we've looked at in the past where we're approaching a finite value. But intuitively, they make sense that these are indeed limits.

More Articles

View All
Identifying scale factors
So right over here, figure B is a scaled copy of figure A. What we want to do is figure out what is the scale factor to go from figure A to figure B. Pause the video and see if you can figure that out. Well, all we have to do is look at corresponding sid…
Discretionary and rulemaking authority of the federal bureaucracy | Khan Academy
In many videos, we have talked about how a bill can become a law. It first gets introduced into the legislative branch, which in the United States is the U.S. Congress at the federal level. If it passes both houses of Congress, then the bill will go to th…
Judgment Is the Decisive Skill
We spoke about specific knowledge. We talked about accountability. We talked about leverage. The last skill that Naval talks about in his tweet storm is judgment, where he says that leverage is a force multiplier for your judgment. We are now living in an…
Inside the Real Black Hawk Down | No Man Left Behind
So the overall mission in Somalia was really a relief operation. We were providing security for the relief organizations who were there trying to distribute food to the starving Somali. Aded was the warlord of the day, so he stepped in and started attacki…
Definite integral of sine and cosine product
We’re in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it’ll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we…
The Uncertainty Principle | Genius
[bell] Ernst, my good man. Ah. Two tins of the usual, professor? Indeed. And I would like you to meet my good friend, and thorn in my scientific side, Dr. Niels Bohr. Hello. An honor to meet you, sir. Ernst, are you familiar with Heisenberg’s uncertainty…