yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: coefficient in Taylor polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Given an f of x, and they say, what is the coefficient for the term containing x plus 2 to the 4th power in the Taylor polynomial centered at x equals negative 2?

So, like always, take a see if you can take a stab at this video on your own before we work through it together.

All right, now let's do this.

In general, our Taylor polynomial P of x is going to have the form—and remember we're centering it at x equals negative two—so this means we're going to evaluate our function at where we're centering it.

We are going to divide it by zero factorial, which is just one. I'm just going to write it all out just so you see the pattern. We could even say that's going to be times x minus where we're centering it, but if we're subtracting a negative 2, it's going to be x plus 2.

I could write to the 0th power, but once again, that's just going to be 1. So a lot of times you won't see someone write this and this, but I'm writing it just to show that there's a consistent pattern.

So then you're going to have plus the first derivative evaluated at negative 2 divided by 1 factorial, which is still just 1, times x plus 2 to the first power plus the second derivative evaluated at negative 2 over 2 factorial times x plus 2 squared.

I think you see where this is going, and really all we care about is the one that has a fourth degree term.

Well, actually let me just write the third degree term too, just to get fluent in this. So the third derivative evaluated at negative two over three factorial times x plus two to the third power.

And now this is the part that we really care about: plus the fourth derivative— I could have just written a 4 there, but I think you get what I'm saying— and then evaluate at x equals negative 2 divided by 4 factorial times x plus two to the fourth power.

So what's the coefficient here? Well, the coefficient is this business. So we need to take the fourth derivative of our original function.

We need to take the fourth derivative of that original function evaluated at negative two and divided by four factorial.

So let's do that. So our function— our first derivative f prime of x is just going to be, just gonna use the power rule: 6 x to the fifth minus three x squared.

The second derivative is going to be equal to five times six is thirty x to the fourth, two times three minus six x to the first power.

The third derivative— the third derivative of x is going to be equal to 4 times 30, which is 120 x to the third power minus 6.

And then the fourth derivative, which is what we really care about, is going to be 3 times 120, which is 360 x to the second power, and the derivative of constants is just 0.

So if we were to evaluate this at x equals negative two, so f the fourth derivative evaluated when x equals negative two is going to be 360 times negative two squared, which is 4.

I'm just going to keep that as 360 times 4. We can obviously evaluate that, but we're going to divide it by 4 factorial.

So the whole coefficient is going to be 360 times 4, which is the numerator here, divided by 4 factorial, divided by 4 times 3 times 2 times 1.

Well, 4 divided by 4, that is going to be 1. 360 divided by 3— maybe I'll think of it this way: 360 divided by 6 is going to be 60, and so that's all we have.

We have 60, and then the denominators have a 1. So this is going to simplify to 60. That's the coefficient for this term.

More Articles

View All
NEVER DISCUSS These 10 Subjects in order to Live a Stoic Life | Stoicism
STOICISM INSIGHTS Presents NEVER DISCUSS These 10 Subjects in order to Live a Stoic Life. Some things in this world are best left unsaid. Throughout history, powerful kingdoms and rulers have fallen from grace simply because of the exchange of one word.…
The Season of Twilight | National Geographic
The best photographs keep something from us, and there’s no better time for mystery than the Twilight hour. Much of my work as a photographer takes me to the Arctic, but I really haven’t spent much time in Canada in the winter. Shorter days allow me to ca…
I decided to change my life
Couple of months ago, I experienced my first burnout. I couldn’t get out of my bed. I was escaping from my responsibilities. I couldn’t do anything; I was delaying every single thing and procrastinating even from the things that I was enjoying. During tha…
POLAR OBSESSION 360 | National Geographic
Eleven years ago was my first trip to Antarctica. I came down here to do a story about the behavior of the leopard seal. My name is Paul Nicklin; it’s my job as a photojournalist to capture the importance and the fragility of this place and bring this bac…
Kevin O'Leary Rates Brooklyn Dumpling Shop's Finest | Chef Wonderful
[Music] That’s what I’m talking about. Hey, Chef Wonderful here, and I want to talk about dumplings. Yes, I love dumplings, and I think they are just the most amazing food. They bring so many cultures together. It’s such a healthy snack, or you can be dec…
Memories Make Us Who We Are | Breakthrough
Steve believes our identities are built on memory. [Music] When you think about memory, it is the thing that threads and unifies our overall sense of being. So, without it, we become stuck in time, right? And we lose our [Music] identity. But how reliab…