yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: coefficient in Taylor polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Given an f of x, and they say, what is the coefficient for the term containing x plus 2 to the 4th power in the Taylor polynomial centered at x equals negative 2?

So, like always, take a see if you can take a stab at this video on your own before we work through it together.

All right, now let's do this.

In general, our Taylor polynomial P of x is going to have the form—and remember we're centering it at x equals negative two—so this means we're going to evaluate our function at where we're centering it.

We are going to divide it by zero factorial, which is just one. I'm just going to write it all out just so you see the pattern. We could even say that's going to be times x minus where we're centering it, but if we're subtracting a negative 2, it's going to be x plus 2.

I could write to the 0th power, but once again, that's just going to be 1. So a lot of times you won't see someone write this and this, but I'm writing it just to show that there's a consistent pattern.

So then you're going to have plus the first derivative evaluated at negative 2 divided by 1 factorial, which is still just 1, times x plus 2 to the first power plus the second derivative evaluated at negative 2 over 2 factorial times x plus 2 squared.

I think you see where this is going, and really all we care about is the one that has a fourth degree term.

Well, actually let me just write the third degree term too, just to get fluent in this. So the third derivative evaluated at negative two over three factorial times x plus two to the third power.

And now this is the part that we really care about: plus the fourth derivative— I could have just written a 4 there, but I think you get what I'm saying— and then evaluate at x equals negative 2 divided by 4 factorial times x plus two to the fourth power.

So what's the coefficient here? Well, the coefficient is this business. So we need to take the fourth derivative of our original function.

We need to take the fourth derivative of that original function evaluated at negative two and divided by four factorial.

So let's do that. So our function— our first derivative f prime of x is just going to be, just gonna use the power rule: 6 x to the fifth minus three x squared.

The second derivative is going to be equal to five times six is thirty x to the fourth, two times three minus six x to the first power.

The third derivative— the third derivative of x is going to be equal to 4 times 30, which is 120 x to the third power minus 6.

And then the fourth derivative, which is what we really care about, is going to be 3 times 120, which is 360 x to the second power, and the derivative of constants is just 0.

So if we were to evaluate this at x equals negative two, so f the fourth derivative evaluated when x equals negative two is going to be 360 times negative two squared, which is 4.

I'm just going to keep that as 360 times 4. We can obviously evaluate that, but we're going to divide it by 4 factorial.

So the whole coefficient is going to be 360 times 4, which is the numerator here, divided by 4 factorial, divided by 4 times 3 times 2 times 1.

Well, 4 divided by 4, that is going to be 1. 360 divided by 3— maybe I'll think of it this way: 360 divided by 6 is going to be 60, and so that's all we have.

We have 60, and then the denominators have a 1. So this is going to simplify to 60. That's the coefficient for this term.

More Articles

View All
The Danger and Excitement of Underwater Cave Diving | Short Film Showcase
We come here every winter, bringing tons of dive stuff, going into the mountains. During this expedition, Darrell, we get to explore this cave system that we have found here. This is the longest underwater cave in Sweden, and we know there’s going to be s…
Employment unit overview | Teacher resources | Financial Literacy | Khan Academy
Hi teachers, Welcome to the unit on employment. So, what’s covered here? Well, I think many of us, I don’t know if you fall into this category, but I remember the first time that I had a job, and they made me fill out all of these forms when I took that …
Restoring a lost sense of touch | Podcast | Overheard at National Geographic
[Music] As a kid growing up in the late 70s, science fiction was all about bionic body parts. There was the six million dollar man with the whole “we can rebuild him better than he was before,” and then most famously in a galaxy far far away there was Luk…
A 750-Year-Old Secret: See How Soy Sauce Is Still Made Today | Short Film Showcase
In a small coastal town in Wakayama Prefecture, Japan, the traditional streets and buildings hold one of the best-kept secrets of Japanese Gastronomy. For it was here, in the 13th century, that soy sauce, as we know it, was first established and produced.…
Subject and object pronouns | The parts of speech | Grammar | Khan Academy
All right, so grammarians, I want to talk to you about the difference between subject and object pronouns. But before we do that, let’s start off with a little primer on what subjects and objects actually are—um, just generally, for our grammatical purpos…
When Big Oil Owns Your Soil | Parched
California is the third largest oil-producing state in the country. A lot of people don’t realize that. When they think of California, they think of vineyards and Hollywood. But we’ve been living with oil and gas production since the late 19th century. Ke…