yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: coefficient in Taylor polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Given an f of x, and they say, what is the coefficient for the term containing x plus 2 to the 4th power in the Taylor polynomial centered at x equals negative 2?

So, like always, take a see if you can take a stab at this video on your own before we work through it together.

All right, now let's do this.

In general, our Taylor polynomial P of x is going to have the form—and remember we're centering it at x equals negative two—so this means we're going to evaluate our function at where we're centering it.

We are going to divide it by zero factorial, which is just one. I'm just going to write it all out just so you see the pattern. We could even say that's going to be times x minus where we're centering it, but if we're subtracting a negative 2, it's going to be x plus 2.

I could write to the 0th power, but once again, that's just going to be 1. So a lot of times you won't see someone write this and this, but I'm writing it just to show that there's a consistent pattern.

So then you're going to have plus the first derivative evaluated at negative 2 divided by 1 factorial, which is still just 1, times x plus 2 to the first power plus the second derivative evaluated at negative 2 over 2 factorial times x plus 2 squared.

I think you see where this is going, and really all we care about is the one that has a fourth degree term.

Well, actually let me just write the third degree term too, just to get fluent in this. So the third derivative evaluated at negative two over three factorial times x plus two to the third power.

And now this is the part that we really care about: plus the fourth derivative— I could have just written a 4 there, but I think you get what I'm saying— and then evaluate at x equals negative 2 divided by 4 factorial times x plus two to the fourth power.

So what's the coefficient here? Well, the coefficient is this business. So we need to take the fourth derivative of our original function.

We need to take the fourth derivative of that original function evaluated at negative two and divided by four factorial.

So let's do that. So our function— our first derivative f prime of x is just going to be, just gonna use the power rule: 6 x to the fifth minus three x squared.

The second derivative is going to be equal to five times six is thirty x to the fourth, two times three minus six x to the first power.

The third derivative— the third derivative of x is going to be equal to 4 times 30, which is 120 x to the third power minus 6.

And then the fourth derivative, which is what we really care about, is going to be 3 times 120, which is 360 x to the second power, and the derivative of constants is just 0.

So if we were to evaluate this at x equals negative two, so f the fourth derivative evaluated when x equals negative two is going to be 360 times negative two squared, which is 4.

I'm just going to keep that as 360 times 4. We can obviously evaluate that, but we're going to divide it by 4 factorial.

So the whole coefficient is going to be 360 times 4, which is the numerator here, divided by 4 factorial, divided by 4 times 3 times 2 times 1.

Well, 4 divided by 4, that is going to be 1. 360 divided by 3— maybe I'll think of it this way: 360 divided by 6 is going to be 60, and so that's all we have.

We have 60, and then the denominators have a 1. So this is going to simplify to 60. That's the coefficient for this term.

More Articles

View All
Homeroom with Sal - Is College Right for Me? (Part 1)
Hi everyone, Sal Khan here from Khan Academy. Welcome to our special homeroom edition on “College: Is College Right for Me?” or I guess, “Is College Right for You?” We have a very exciting group of panelists: young people who are maybe a few years ahead o…
Married for 88 Years, This Couple Shares Their Secrets to Love | Short Film Showcase
[Music] Episode of Hustle and Athena Rocket. Allah Captain Miranov Qatari long, that’s an understanding in the future. [Music] There is any, yeah, I want a coffee date. Efficient without my dad is under Nate with the grace of God, and Mohammed said in on…
Changing the narrative with Nat Geo Photographer Sofia Jaramillo | Hispanic Heritage Month
I first started with photography on a college road trip with my dad, and I took this picture. I remember looking at the back of my camera and just being like, “This is it, this is what I’m gonna do for the rest of my life.” My name is Sophia Jaramillo. I…
Example visually evaluating discrete functions
What we have here is a visual depiction of a function, and this is a depiction of y is equal to h of x. Now, when a lot of people see function notation like this, they can see it as somewhat intimidating until you realize what it’s saying. All a function …
A Little Redneck Ingenuity | Port Protection
Blade spring and all, it’s the time to get prepared for the upcoming winter. You just can’t run down to the hardware store and get what you need; you have to go out and work for it physically, and it takes a lot of time. Eighteen-year resident Tim Curley…
Making objective summaries of literary texts | Reading | Khan Academy
[David] Hello readers, let’s talk about summarizing stories. This is a useful skill for life. I’ve found myself describing the plots of movies, TV shows, and books to my friends, my coworkers, my family, and it’s also very useful in writing. Understanding…