yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: coefficient in Taylor polynomial | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Given an f of x, and they say, what is the coefficient for the term containing x plus 2 to the 4th power in the Taylor polynomial centered at x equals negative 2?

So, like always, take a see if you can take a stab at this video on your own before we work through it together.

All right, now let's do this.

In general, our Taylor polynomial P of x is going to have the form—and remember we're centering it at x equals negative two—so this means we're going to evaluate our function at where we're centering it.

We are going to divide it by zero factorial, which is just one. I'm just going to write it all out just so you see the pattern. We could even say that's going to be times x minus where we're centering it, but if we're subtracting a negative 2, it's going to be x plus 2.

I could write to the 0th power, but once again, that's just going to be 1. So a lot of times you won't see someone write this and this, but I'm writing it just to show that there's a consistent pattern.

So then you're going to have plus the first derivative evaluated at negative 2 divided by 1 factorial, which is still just 1, times x plus 2 to the first power plus the second derivative evaluated at negative 2 over 2 factorial times x plus 2 squared.

I think you see where this is going, and really all we care about is the one that has a fourth degree term.

Well, actually let me just write the third degree term too, just to get fluent in this. So the third derivative evaluated at negative two over three factorial times x plus two to the third power.

And now this is the part that we really care about: plus the fourth derivative— I could have just written a 4 there, but I think you get what I'm saying— and then evaluate at x equals negative 2 divided by 4 factorial times x plus two to the fourth power.

So what's the coefficient here? Well, the coefficient is this business. So we need to take the fourth derivative of our original function.

We need to take the fourth derivative of that original function evaluated at negative two and divided by four factorial.

So let's do that. So our function— our first derivative f prime of x is just going to be, just gonna use the power rule: 6 x to the fifth minus three x squared.

The second derivative is going to be equal to five times six is thirty x to the fourth, two times three minus six x to the first power.

The third derivative— the third derivative of x is going to be equal to 4 times 30, which is 120 x to the third power minus 6.

And then the fourth derivative, which is what we really care about, is going to be 3 times 120, which is 360 x to the second power, and the derivative of constants is just 0.

So if we were to evaluate this at x equals negative two, so f the fourth derivative evaluated when x equals negative two is going to be 360 times negative two squared, which is 4.

I'm just going to keep that as 360 times 4. We can obviously evaluate that, but we're going to divide it by 4 factorial.

So the whole coefficient is going to be 360 times 4, which is the numerator here, divided by 4 factorial, divided by 4 times 3 times 2 times 1.

Well, 4 divided by 4, that is going to be 1. 360 divided by 3— maybe I'll think of it this way: 360 divided by 6 is going to be 60, and so that's all we have.

We have 60, and then the denominators have a 1. So this is going to simplify to 60. That's the coefficient for this term.

More Articles

View All
The Water of Lost Hills | Water & Power: A California Heist
MARK: Rafaela, I know you feel grateful. Yes. To The Wonderful Company, and they have done things that no farmer will do. Yes. There’s a park now. There’s– Yes, I know. - The roads are better. There’s some houses. But the wages are still minimum. And t…
Things you should know about your credit card | Consumer credit | Financial Literacy | Khan Academy
You’re likely already familiar with the idea of a credit card. You know that you can go to a store and buy things with your credit card. But what we’re going to do in this video is go into a little bit more detail on exactly what’s happening and what are …
Stock Market Trivia Night! (w/ @InvestWithQueenie)
You are live! We are live! Hello, everybody! If you can hear us, let us know. I’m joined by Queenie. How are you going, Queen? “Yeah, good! It’s so good to be here, and yeah, streaming live, it’s so much fun. I love live! Like, mystery in the air, like wh…
The ONE thing most Millionaires do that makes them Millionaires
What’s up, you guys? It’s Graham here. So, this is something that so many people seem to miss entirely or just don’t fully understand. This is also something that the most financially successful people all seem to do on autopilot without ever even thinkin…
HOW TO INVEST $100 PER WEEK ASAP
What’s up you guys? It’s Graham here. So in the last few months, this channel has grown more than I ever would have imagined. Because we have so many new people joining us, I think it’s really important that we get back to the basics and discuss some of t…
Discussions of conditions for Hardy Weinberg | Biology | Khan Academy
In the introductory video to the Hardy-Weinberg equation, I gave some conditions for the Hardy-Weinberg equation to hold. What I want to do in this video is go into a little bit more depth and have a little more of a discussion on the conditions for the H…