yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The satisfying math of folding origami - Evan Zodl


3m read
·Nov 8, 2024

As the space telescope prepares to snap a photo, the light of the nearby star blocks its view. But the telescope has a trick up its sleeve: a massive shield to block the glare. This starshade has a diameter of about 35 meters—that folds down to just under 2.5 meters, small enough to carry on the end of a rocket.

Its compact design is based on an ancient art form. Origami, which literally translates to “folding paper,” is a Japanese practice dating back to at least the 17th century. In origami, the same simple concepts yield everything from a paper crane with about 20 steps to this dragon with over 1,000 steps, to a starshade. A single, traditionally square sheet of paper can be transformed into almost any shape, purely by folding.

Unfold that sheet, and there’s a pattern of lines, each of which represents a concave valley fold or a convex mountain fold. Origami artists arrange these folds to create crease patterns, which serve as blueprints for their designs. Though most origami models are three-dimensional, their crease patterns are usually designed to fold flat without introducing any new creases or cutting the paper.

The mathematical rules behind flat-foldable crease patterns are much simpler than those behind 3D crease patterns—it’s easier to create an abstract 2D design and then shape it into a 3D form. There are four rules that any flat-foldable crease pattern must obey. First, the crease pattern must be two-colorable—meaning the areas between creases can be filled with two colors so that areas of the same color never touch.

Add another crease here, and the crease pattern no longer displays two-colorability. Second, the number of mountain and valley folds at any interior vertex must differ by exactly two—like the three valley folds and one mountain fold that meet here. Here’s a closer look at what happens when we make the folds at this vertex. If we add a mountain fold at this vertex, there are three valleys and two mountains. If it’s a valley, there are four valleys and one mountain. Either way, the model doesn’t fold flat.

The third rule is that if we number all the angles at an interior vertex moving clockwise or counterclockwise, the even-numbered angles must add up to 180 degrees, as must the odd-numbered angles. Looking closer at the folds, we can see why. If we add a crease and number the new angles at this vertex, the even and odd angles no longer add up to 180 degrees, and the model doesn’t fold flat.

Finally, a layer cannot penetrate a fold. A 2D, flat-foldable base is often an abstract representation of a final 3D shape. Understanding the relationship between crease patterns, 2D bases, and the final 3D form allows origami artists to design incredibly complex shapes. Take this crease pattern by origami artist Robert J. Lang. The crease pattern allocates areas for a creature's legs, tail, and other appendages.

When we fold the crease pattern into this flat base, each of these allocated areas becomes a separate flap. By narrowing, bending, and sculpting these flaps, the 2D base becomes a 3D scorpion. Now, what if we wanted to fold 7 of these flowers from the same sheet of paper? If we can duplicate the flower’s crease pattern and connect each of them in such a way that all four laws are satisfied, we can create a tessellation, or a repeating pattern of shapes that covers a plane without any gaps or overlaps.

The ability to fold a large surface into a compact shape has applications from the vastness of space to the microscopic world of our cells. Using principles of origami, medical engineers have re-imagined the traditional stent graft, a tube used to open and support damaged blood vessels.

Through tessellation, the rigid tubular structure folds into a compact sheet about half its expanded size. Origami principles have been used in airbags, solar arrays, self-folding robots, and even DNA nanostructures—who knows what possibilities will unfold next.

More Articles

View All
Algebra Foundations - Course Trailer
When you’re sitting in a math class and the teacher starts writing some symbols on the board that you might not quite understand just yet, it might be tempting to say, “Hey, why do I need to learn this? This seems a little bit abstract for me.” To answer…
Introduction to sustainability| Land and water use| AP Environmental science| Khan Academy
Let’s talk about sustainability. You’ve probably come across the word “sustainable” at some point in your life. If I decided to continue to talk for the rest of this video without taking a breath, you might tell me, “Mia, that’s just not sustainable.” In …
The U.S. Interest Rate Problem Just Flipped (Jerome Powell Changes Stance)
If you’ve been paying attention to the stock market recently, you’ll have noticed it’s currently nose diving. It’s nothing crazy yet; it’s definitely not a stock market crash. But the S&P 500 is down around 5% since just last week. If you’re wondering…
LearnStorm Growth Mindset: Dave Paunesku on teacher modeling of growth mindset
Teachers can play a tremendously powerful role in creating a growth mindset culture, and there are a variety of different strategies and approaches they can use to do that. One way the teachers can powerfully role model growth mindset is to really have a…
Catch of the Week - Something to Prove | Wicked Tuna
Airing it under control, the best time forward. Bump, bump, quick, good, neutral, great! Now it’s a tuna. Having this fish hooked up amongst the fleet is great. If we can land this fish, it would be the first one landed. It could be a good shot in the ar…
Absorption and reflection | Waves | Middle school physics | Khan Academy
I’m showing you this beautiful picture of snow-capped mountains overlooking this alpine lake because there’s a lot of light moving around. Now we’re going to talk about the different ways that light can interact with different media. But what I’m talking…