yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The satisfying math of folding origami - Evan Zodl


3m read
·Nov 8, 2024

As the space telescope prepares to snap a photo, the light of the nearby star blocks its view. But the telescope has a trick up its sleeve: a massive shield to block the glare. This starshade has a diameter of about 35 meters—that folds down to just under 2.5 meters, small enough to carry on the end of a rocket.

Its compact design is based on an ancient art form. Origami, which literally translates to “folding paper,” is a Japanese practice dating back to at least the 17th century. In origami, the same simple concepts yield everything from a paper crane with about 20 steps to this dragon with over 1,000 steps, to a starshade. A single, traditionally square sheet of paper can be transformed into almost any shape, purely by folding.

Unfold that sheet, and there’s a pattern of lines, each of which represents a concave valley fold or a convex mountain fold. Origami artists arrange these folds to create crease patterns, which serve as blueprints for their designs. Though most origami models are three-dimensional, their crease patterns are usually designed to fold flat without introducing any new creases or cutting the paper.

The mathematical rules behind flat-foldable crease patterns are much simpler than those behind 3D crease patterns—it’s easier to create an abstract 2D design and then shape it into a 3D form. There are four rules that any flat-foldable crease pattern must obey. First, the crease pattern must be two-colorable—meaning the areas between creases can be filled with two colors so that areas of the same color never touch.

Add another crease here, and the crease pattern no longer displays two-colorability. Second, the number of mountain and valley folds at any interior vertex must differ by exactly two—like the three valley folds and one mountain fold that meet here. Here’s a closer look at what happens when we make the folds at this vertex. If we add a mountain fold at this vertex, there are three valleys and two mountains. If it’s a valley, there are four valleys and one mountain. Either way, the model doesn’t fold flat.

The third rule is that if we number all the angles at an interior vertex moving clockwise or counterclockwise, the even-numbered angles must add up to 180 degrees, as must the odd-numbered angles. Looking closer at the folds, we can see why. If we add a crease and number the new angles at this vertex, the even and odd angles no longer add up to 180 degrees, and the model doesn’t fold flat.

Finally, a layer cannot penetrate a fold. A 2D, flat-foldable base is often an abstract representation of a final 3D shape. Understanding the relationship between crease patterns, 2D bases, and the final 3D form allows origami artists to design incredibly complex shapes. Take this crease pattern by origami artist Robert J. Lang. The crease pattern allocates areas for a creature's legs, tail, and other appendages.

When we fold the crease pattern into this flat base, each of these allocated areas becomes a separate flap. By narrowing, bending, and sculpting these flaps, the 2D base becomes a 3D scorpion. Now, what if we wanted to fold 7 of these flowers from the same sheet of paper? If we can duplicate the flower’s crease pattern and connect each of them in such a way that all four laws are satisfied, we can create a tessellation, or a repeating pattern of shapes that covers a plane without any gaps or overlaps.

The ability to fold a large surface into a compact shape has applications from the vastness of space to the microscopic world of our cells. Using principles of origami, medical engineers have re-imagined the traditional stent graft, a tube used to open and support damaged blood vessels.

Through tessellation, the rigid tubular structure folds into a compact sheet about half its expanded size. Origami principles have been used in airbags, solar arrays, self-folding robots, and even DNA nanostructures—who knows what possibilities will unfold next.

More Articles

View All
Seth Klarman: The Investing Opportunity of a Generation (First Interview in 12 YEARS)
Do you think that opportunity that you had in 1979 still exists in 2023? Seth Clarman is a legendary investor who just broke his 12-year silence to reveal the secrets to outperforming the market and the investment opportunity he would dedicate his life t…
Latest Grand Seiko Watches Revealed | Watches and Wonders 2024
For accuracy for craftsmanship, Grand Seiko has for a long time beaten pretty well. [Music] Everybody, Grand Seiko has nine new pieces introducing them here at Washington Wonder Geneva 2024. Let’s get down into them because we’re going to see a complete s…
Models of citizenship | Citizenship | High school civics | Khan Academy
What do you think it means to be a good citizen? What does a good citizen do? Take a minute to imagine your idea of a good citizen. What characteristics does that person have? What actions does that person take that contribute to their status as an active…
Why it’s EASIER to sell a $3,000,000 house vs a $300,000 house
What’s up, you guys? It’s Graham here. So, I get a lot of comments from aspiring real estate agents who think that the higher the price point, the more difficult the deal. Some like dealing with really high net worth buyers or sellers. Just because you’r…
Predicting the Apocalypse? | The Story of God
But is it possible to predict the end? A few years back, many people thought they had. According to popular legend, the ancient Maya thought the apocalypse would arrive on a specific date: December 21st, 2012. I want to know if this is really true, so I’v…
Latin American Independence movements | 1450 - Present | World History | Khan Academy
This is a map of what the Americas looked like at around the year 1750. As you can see, it was for the most part divided as colonies by a bunch of European powers. Most prominent is Spain; you can see in this peach-brownish color it had control all the wa…