yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The satisfying math of folding origami - Evan Zodl


3m read
·Nov 8, 2024

As the space telescope prepares to snap a photo, the light of the nearby star blocks its view. But the telescope has a trick up its sleeve: a massive shield to block the glare. This starshade has a diameter of about 35 meters—that folds down to just under 2.5 meters, small enough to carry on the end of a rocket.

Its compact design is based on an ancient art form. Origami, which literally translates to “folding paper,” is a Japanese practice dating back to at least the 17th century. In origami, the same simple concepts yield everything from a paper crane with about 20 steps to this dragon with over 1,000 steps, to a starshade. A single, traditionally square sheet of paper can be transformed into almost any shape, purely by folding.

Unfold that sheet, and there’s a pattern of lines, each of which represents a concave valley fold or a convex mountain fold. Origami artists arrange these folds to create crease patterns, which serve as blueprints for their designs. Though most origami models are three-dimensional, their crease patterns are usually designed to fold flat without introducing any new creases or cutting the paper.

The mathematical rules behind flat-foldable crease patterns are much simpler than those behind 3D crease patterns—it’s easier to create an abstract 2D design and then shape it into a 3D form. There are four rules that any flat-foldable crease pattern must obey. First, the crease pattern must be two-colorable—meaning the areas between creases can be filled with two colors so that areas of the same color never touch.

Add another crease here, and the crease pattern no longer displays two-colorability. Second, the number of mountain and valley folds at any interior vertex must differ by exactly two—like the three valley folds and one mountain fold that meet here. Here’s a closer look at what happens when we make the folds at this vertex. If we add a mountain fold at this vertex, there are three valleys and two mountains. If it’s a valley, there are four valleys and one mountain. Either way, the model doesn’t fold flat.

The third rule is that if we number all the angles at an interior vertex moving clockwise or counterclockwise, the even-numbered angles must add up to 180 degrees, as must the odd-numbered angles. Looking closer at the folds, we can see why. If we add a crease and number the new angles at this vertex, the even and odd angles no longer add up to 180 degrees, and the model doesn’t fold flat.

Finally, a layer cannot penetrate a fold. A 2D, flat-foldable base is often an abstract representation of a final 3D shape. Understanding the relationship between crease patterns, 2D bases, and the final 3D form allows origami artists to design incredibly complex shapes. Take this crease pattern by origami artist Robert J. Lang. The crease pattern allocates areas for a creature's legs, tail, and other appendages.

When we fold the crease pattern into this flat base, each of these allocated areas becomes a separate flap. By narrowing, bending, and sculpting these flaps, the 2D base becomes a 3D scorpion. Now, what if we wanted to fold 7 of these flowers from the same sheet of paper? If we can duplicate the flower’s crease pattern and connect each of them in such a way that all four laws are satisfied, we can create a tessellation, or a repeating pattern of shapes that covers a plane without any gaps or overlaps.

The ability to fold a large surface into a compact shape has applications from the vastness of space to the microscopic world of our cells. Using principles of origami, medical engineers have re-imagined the traditional stent graft, a tube used to open and support damaged blood vessels.

Through tessellation, the rigid tubular structure folds into a compact sheet about half its expanded size. Origami principles have been used in airbags, solar arrays, self-folding robots, and even DNA nanostructures—who knows what possibilities will unfold next.

More Articles

View All
Amazon CEO Jeff Bezos on The David Rubenstein Show
You have become the wealthiest man in the world. It was fine being the second wealthiest person in the world; that actually worked fine. What propelled you to sell things more than books? I thought to myself, we can sell anything this way. Who came up wit…
Innovation Requires Decentralization and a Frontier
Innovation requires a couple of things. One of the things that it seems to require is decentralization. I don’t think it’s a coincidence that the Athenian city-states, the Italian city-states, or even the United States, when it was more free-form and invo…
Learn to Love Your Mistakes
You mentioned in the book that you need to learn to love your mistakes. Even as I was telling you about my hopeless, uh—or not hopeless, but hapless, uh, tendencies, there’s a part of me I start to flush. I start to feel embarrassed. It’s like it’s a litt…
NEW! Khan Academy's AI Tutor, Khanmigo - In Depth Demo
Hey everyone, Sal here, and I wanted to show you an in-depth demo of the new AI that we have happening throughout Khan Academy. What you’re going to see is that it exists in two ways. One is helping students and learners and teachers with many of the thi…
What is mastery learning?
[Narrator] Have you ever really tried to learn something and you just couldn’t? It can make you feel like you’re not so smart, right? Well, it’s not your fault and it’s not your teacher’s fault, it’s just our traditional approach to learning. We go thro…
Confucius | The Art of Becoming Better (Self-Cultivation)
Isn’t it the case we should always stay true to ourselves? Which means that we ought to know who we are and organize our lives in ways that are compatible with our personalities? When we look for a partner, for example, we look for someone that we’re comp…