yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The satisfying math of folding origami - Evan Zodl


3m read
·Nov 8, 2024

As the space telescope prepares to snap a photo, the light of the nearby star blocks its view. But the telescope has a trick up its sleeve: a massive shield to block the glare. This starshade has a diameter of about 35 meters—that folds down to just under 2.5 meters, small enough to carry on the end of a rocket.

Its compact design is based on an ancient art form. Origami, which literally translates to “folding paper,” is a Japanese practice dating back to at least the 17th century. In origami, the same simple concepts yield everything from a paper crane with about 20 steps to this dragon with over 1,000 steps, to a starshade. A single, traditionally square sheet of paper can be transformed into almost any shape, purely by folding.

Unfold that sheet, and there’s a pattern of lines, each of which represents a concave valley fold or a convex mountain fold. Origami artists arrange these folds to create crease patterns, which serve as blueprints for their designs. Though most origami models are three-dimensional, their crease patterns are usually designed to fold flat without introducing any new creases or cutting the paper.

The mathematical rules behind flat-foldable crease patterns are much simpler than those behind 3D crease patterns—it’s easier to create an abstract 2D design and then shape it into a 3D form. There are four rules that any flat-foldable crease pattern must obey. First, the crease pattern must be two-colorable—meaning the areas between creases can be filled with two colors so that areas of the same color never touch.

Add another crease here, and the crease pattern no longer displays two-colorability. Second, the number of mountain and valley folds at any interior vertex must differ by exactly two—like the three valley folds and one mountain fold that meet here. Here’s a closer look at what happens when we make the folds at this vertex. If we add a mountain fold at this vertex, there are three valleys and two mountains. If it’s a valley, there are four valleys and one mountain. Either way, the model doesn’t fold flat.

The third rule is that if we number all the angles at an interior vertex moving clockwise or counterclockwise, the even-numbered angles must add up to 180 degrees, as must the odd-numbered angles. Looking closer at the folds, we can see why. If we add a crease and number the new angles at this vertex, the even and odd angles no longer add up to 180 degrees, and the model doesn’t fold flat.

Finally, a layer cannot penetrate a fold. A 2D, flat-foldable base is often an abstract representation of a final 3D shape. Understanding the relationship between crease patterns, 2D bases, and the final 3D form allows origami artists to design incredibly complex shapes. Take this crease pattern by origami artist Robert J. Lang. The crease pattern allocates areas for a creature's legs, tail, and other appendages.

When we fold the crease pattern into this flat base, each of these allocated areas becomes a separate flap. By narrowing, bending, and sculpting these flaps, the 2D base becomes a 3D scorpion. Now, what if we wanted to fold 7 of these flowers from the same sheet of paper? If we can duplicate the flower’s crease pattern and connect each of them in such a way that all four laws are satisfied, we can create a tessellation, or a repeating pattern of shapes that covers a plane without any gaps or overlaps.

The ability to fold a large surface into a compact shape has applications from the vastness of space to the microscopic world of our cells. Using principles of origami, medical engineers have re-imagined the traditional stent graft, a tube used to open and support damaged blood vessels.

Through tessellation, the rigid tubular structure folds into a compact sheet about half its expanded size. Origami principles have been used in airbags, solar arrays, self-folding robots, and even DNA nanostructures—who knows what possibilities will unfold next.

More Articles

View All
Multi step addition word problem
We’re told that Joe started his math homework. He finished 23 problems by himself. He finished 13 more problems with help from Sal. I don’t know if they’re talking about me or not. And then they say there are nine math problems left. And then they ask us…
Give to Khan Academy today!
Hi, I’m Sal Khan, founder of Khan Academy, and with your support I’m excited to say: Here’s just a few of the things that we’ve been able to accomplish together. We now cover a wide range of academic subjects including history, science, grammar, and much…
Warren Buffett: How Most People Should Invest in 2023
Since 1965, Warren Buffett, the world’s best investor, has been laser-focused on buying individual stocks and trying to beat the market to benefit the shareholders of Berkshire Hathaway. And he’s done that very successfully, with an average annual return …
TIL: Wild Lions Live in India | Today I Learned
[Music] Most people think about lions in Africa, but very few people know that they actually exist in India too. It looks, uh, not very different from the African lion. It is, however, a bit smaller. It does have flappy skin on the stomach that looks diff…
2015 AP Physics 1 free response 3b
The spring is now compressed twice as much to Δx = 2D. A student is asked to predict whether the final position of the block will be twice as far at x = 6D. The student reasons that since the spring will be compressed twice as much as before, the block wi…
Cryopreservation Explained | Explorer
Now some people elect for a different procedure. I just switched over to neuro preservation because everyone that works at Alor is signed up for neuro, so you just have to assume that’s the better thing. About half our members make one choice, half the ot…