yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The satisfying math of folding origami - Evan Zodl


3m read
·Nov 8, 2024

As the space telescope prepares to snap a photo, the light of the nearby star blocks its view. But the telescope has a trick up its sleeve: a massive shield to block the glare. This starshade has a diameter of about 35 meters—that folds down to just under 2.5 meters, small enough to carry on the end of a rocket.

Its compact design is based on an ancient art form. Origami, which literally translates to “folding paper,” is a Japanese practice dating back to at least the 17th century. In origami, the same simple concepts yield everything from a paper crane with about 20 steps to this dragon with over 1,000 steps, to a starshade. A single, traditionally square sheet of paper can be transformed into almost any shape, purely by folding.

Unfold that sheet, and there’s a pattern of lines, each of which represents a concave valley fold or a convex mountain fold. Origami artists arrange these folds to create crease patterns, which serve as blueprints for their designs. Though most origami models are three-dimensional, their crease patterns are usually designed to fold flat without introducing any new creases or cutting the paper.

The mathematical rules behind flat-foldable crease patterns are much simpler than those behind 3D crease patterns—it’s easier to create an abstract 2D design and then shape it into a 3D form. There are four rules that any flat-foldable crease pattern must obey. First, the crease pattern must be two-colorable—meaning the areas between creases can be filled with two colors so that areas of the same color never touch.

Add another crease here, and the crease pattern no longer displays two-colorability. Second, the number of mountain and valley folds at any interior vertex must differ by exactly two—like the three valley folds and one mountain fold that meet here. Here’s a closer look at what happens when we make the folds at this vertex. If we add a mountain fold at this vertex, there are three valleys and two mountains. If it’s a valley, there are four valleys and one mountain. Either way, the model doesn’t fold flat.

The third rule is that if we number all the angles at an interior vertex moving clockwise or counterclockwise, the even-numbered angles must add up to 180 degrees, as must the odd-numbered angles. Looking closer at the folds, we can see why. If we add a crease and number the new angles at this vertex, the even and odd angles no longer add up to 180 degrees, and the model doesn’t fold flat.

Finally, a layer cannot penetrate a fold. A 2D, flat-foldable base is often an abstract representation of a final 3D shape. Understanding the relationship between crease patterns, 2D bases, and the final 3D form allows origami artists to design incredibly complex shapes. Take this crease pattern by origami artist Robert J. Lang. The crease pattern allocates areas for a creature's legs, tail, and other appendages.

When we fold the crease pattern into this flat base, each of these allocated areas becomes a separate flap. By narrowing, bending, and sculpting these flaps, the 2D base becomes a 3D scorpion. Now, what if we wanted to fold 7 of these flowers from the same sheet of paper? If we can duplicate the flower’s crease pattern and connect each of them in such a way that all four laws are satisfied, we can create a tessellation, or a repeating pattern of shapes that covers a plane without any gaps or overlaps.

The ability to fold a large surface into a compact shape has applications from the vastness of space to the microscopic world of our cells. Using principles of origami, medical engineers have re-imagined the traditional stent graft, a tube used to open and support damaged blood vessels.

Through tessellation, the rigid tubular structure folds into a compact sheet about half its expanded size. Origami principles have been used in airbags, solar arrays, self-folding robots, and even DNA nanostructures—who knows what possibilities will unfold next.

More Articles

View All
The 10 WORST Investing Mistakes to Make (Investing For Beginners)
One of the trends we’ve seen over the past few years is there’s been a lot of new investors entering the market. In Robin Hood’s most recent quarterly data, they showed that in the past 12 months, they’ve doubled the amount of funded accounts. In their S1…
IMPOSSIBLE Waterfall!: Mind Blow 11
[Music] A new toilet that can flush golf balls, and Natalie Portman’s real name is Natalie Hlag. Jackie Chan is Kung Chan, and don’t call me Carlos Ray or I’ll stick my boot up your. Vsauce! Kevin here. This is M. Blow things are not always what they see…
Starship | Fifth Flight Test
Attention all flight crew members. This is the final go/no-go poll for operations. Raptor one. Raptor one, let’s go. Raptor two, go. Stage one, go. Stage two, go. Flight director is go for launch. We have lift-off! [Music] Vehicles pitching. [Music] Do…
Inside The Navy's Indoor Ocean
I’m here at the Navy’s Indoor Ocean at Carderock. This is the biggest wave pool in the world, and they can make all kinds of different waves so they can test scale ships and make them better before they actually go out on the open ocean. I came in and I’d…
Financial institutions and markets | Investments and retirement | Financial Literacy | Khan Academy
So let’s talk a little bit about financial institutions. There are many different types of financial institutions, but probably the most basic one that almost everyone encounters at some point in their life is a bank. At a bank, at the most basic level, t…
The actual reason why you procrastinate and how to fix it
It’s 6:00 p.m. You just got back home, and you’ve got a task that has been lingering in your mind, waiting to be checked off your list. It could be a project for work or school, house chores that can’t be ignored any longer, or maybe it’s about spending q…