yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

The satisfying math of folding origami - Evan Zodl


3m read
·Nov 8, 2024

As the space telescope prepares to snap a photo, the light of the nearby star blocks its view. But the telescope has a trick up its sleeve: a massive shield to block the glare. This starshade has a diameter of about 35 meters—that folds down to just under 2.5 meters, small enough to carry on the end of a rocket.

Its compact design is based on an ancient art form. Origami, which literally translates to “folding paper,” is a Japanese practice dating back to at least the 17th century. In origami, the same simple concepts yield everything from a paper crane with about 20 steps to this dragon with over 1,000 steps, to a starshade. A single, traditionally square sheet of paper can be transformed into almost any shape, purely by folding.

Unfold that sheet, and there’s a pattern of lines, each of which represents a concave valley fold or a convex mountain fold. Origami artists arrange these folds to create crease patterns, which serve as blueprints for their designs. Though most origami models are three-dimensional, their crease patterns are usually designed to fold flat without introducing any new creases or cutting the paper.

The mathematical rules behind flat-foldable crease patterns are much simpler than those behind 3D crease patterns—it’s easier to create an abstract 2D design and then shape it into a 3D form. There are four rules that any flat-foldable crease pattern must obey. First, the crease pattern must be two-colorable—meaning the areas between creases can be filled with two colors so that areas of the same color never touch.

Add another crease here, and the crease pattern no longer displays two-colorability. Second, the number of mountain and valley folds at any interior vertex must differ by exactly two—like the three valley folds and one mountain fold that meet here. Here’s a closer look at what happens when we make the folds at this vertex. If we add a mountain fold at this vertex, there are three valleys and two mountains. If it’s a valley, there are four valleys and one mountain. Either way, the model doesn’t fold flat.

The third rule is that if we number all the angles at an interior vertex moving clockwise or counterclockwise, the even-numbered angles must add up to 180 degrees, as must the odd-numbered angles. Looking closer at the folds, we can see why. If we add a crease and number the new angles at this vertex, the even and odd angles no longer add up to 180 degrees, and the model doesn’t fold flat.

Finally, a layer cannot penetrate a fold. A 2D, flat-foldable base is often an abstract representation of a final 3D shape. Understanding the relationship between crease patterns, 2D bases, and the final 3D form allows origami artists to design incredibly complex shapes. Take this crease pattern by origami artist Robert J. Lang. The crease pattern allocates areas for a creature's legs, tail, and other appendages.

When we fold the crease pattern into this flat base, each of these allocated areas becomes a separate flap. By narrowing, bending, and sculpting these flaps, the 2D base becomes a 3D scorpion. Now, what if we wanted to fold 7 of these flowers from the same sheet of paper? If we can duplicate the flower’s crease pattern and connect each of them in such a way that all four laws are satisfied, we can create a tessellation, or a repeating pattern of shapes that covers a plane without any gaps or overlaps.

The ability to fold a large surface into a compact shape has applications from the vastness of space to the microscopic world of our cells. Using principles of origami, medical engineers have re-imagined the traditional stent graft, a tube used to open and support damaged blood vessels.

Through tessellation, the rigid tubular structure folds into a compact sheet about half its expanded size. Origami principles have been used in airbags, solar arrays, self-folding robots, and even DNA nanostructures—who knows what possibilities will unfold next.

More Articles

View All
Ice Fishing and Changing Diets (Clip) | Alaska: The Next Generation
It’s been a pretty heavy duty winter for us. It’s been a little rough. Whoa! You know, just staying at home and maintaining the farm. Go, go, go, go. No! The kids are kind of antsy if they’re cooped up for too long. We’re missing a chicken. I only count …
Worked example: separable equation with an implicit solution | Khan Academy
We’re given a differential equation right over here: cosine of y + 2, this whole thing times the derivative of y with respect to x is equal to 2x. We’re given that for a particular solution, when x is equal to 1, y of 1 is equal to zero. We’re asked, what…
Artificial Intelligence: Mankind's Last Invention
It could be terrible and it could be great. It’s not clear. Right? But one thing is for sure, we will not control it. Go is arguably the most complex board game in existence. Its goal is simple: surround more territory than your opponent. This game has b…
Valuation Modeling: Excel as a tool
Hi, welcome back! In this session, I’m going to break the mold; not talk about big ideas or companies, but about how to use an Excel spreadsheet I’ve created on valuation. Before I go further, though, there’s nothing magical about the spreadsheet. There a…
Refugees Welcomed in New York | Explorer
[music playing] HOST: Of approximately 61,000 residents in Utica, New York, nearly 11,000 are immigrants and refugees. And 450 or more arrive here each year. Utica was a manufacturing town in the 1970s and 1980s. Some of our factories began to leave, and…
SLOW Motion Butterfly Puddling - Smarter Every Day 80
Face be Destin. Welcome back to Smarter Every Day! We’re back with Phil Torres, entomologist, and about two years ago I created the video about butterflies. That, about we’re eating a fish, the pits have taken down the fray. That’s not what was happening …