yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
TATTOOING Close Up (in Slow Motion) - Smarter Every Day 122
Hey, it’s me, Destin. Welcome back to Smarter Every Day. Not really sure how this is gonna work out, but I want to know a little bit more about tattoos. So I’m just walking up to a tattoo parlour and seeing if they will let me video a tattoo being applied…
YouTube Is Deleting My Channel - What Happened
What’s up, guys? It’s Graham here. So to bring everyone up to speed with what happened, I posted a video about three weeks ago that YouTube had scheduled my channel for deletion on July 12th. This was a giant red notice that came completely out of nowher…
Wine, Cheese and Investing (w/ @danielpronk)
[Music] Hey guys, welcome back to the channel! We’re continuing with the new money advent calendar today, and this is a pretty cool video we’ve got coming in today. It is, of course, wine and cheese night, and of course, I’m joined by Daniel Pronk. How a…
Protecting Ancient Artifacts | Explorer
Nadia’s help, the museum agreed to let me inspect the seized antiquities. “Where are you keeping the antiquities?” I asked. “Down here,” was the response from a curator of the museum. This kind of “jewy” Ramon punk guy looked a bit out of place, but th…
Interpreting points in context of graphs of systems
We’re told that Lauren uses a blend of dark roast beans and light roast beans to make coffee at her cafe. She needs 80 kilograms of beans in total for her next order. Dark roast beans cost three dollars per kilogram, light roast beans cost two dollars per…
HOW TO STAY CALM & POSITIVE IN LIFE | MARCUS AURELIUS | STOICISM INSIGHTS
It’s difficult to realize that nearly 2,000 years ago, a Roman emperor confronted many of the same issues that we do today. Marcus Aurelius, a Stoic philosopher and statesman, struggled with uncertainty, authority, and the enormous constraints of empire. …