yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Molarity | Intermolecular forces and properties | AP Chemistry | Khan Academy
In this video, we’re going to talk about one of the most common ways to measure solute concentration in a solution, and that is molarity. Molarity is defined as the number of moles of solute (the thing that we are dissolving in a solvent) divided by the l…
The Two Einsteins: Behind the Scenes | Genius
[music playing] RON HOWARD: We began thinking about how we would tell the story of Albert Einstein, and Geoffrey Rush instantly was at the top of our list. GIGI PRITZGER: The thing that has been so gratifying to watch in Geoffrey’s performance of Einste…
How I learned English by myself for free without studying
Hi guys, what’s up? It’s me, Judy. I’m a first-year medical student in Turkey, and today we’re gonna be talking about how I learned English by myself without even studying it. So let’s get started! Okay, so I’ll mention about my English background, a dis…
Adjectives and commas | Adjectives | Khan Academy
Hey Garans, hey Paige, hi David. Hey, so Paige, I went to the grocery store yesterday and I got this apple. Okay? I put it in the fridge, uh, and this morning when I opened the fridge, the apple was all like gross and sticky and mushy. I really want to w…
Inside Japan’s Earthquake Simulator
This is the world’s largest earthquake simulator. It’s called E-Defense. Its huge shake table can support a 10-story building and then move it in all directions with the force of the world’s most destructive earthquakes. E-Defense has conducted more than …
The Lost City of Chan Chan | Lost Cities with Albert Lin
I’m headed to the lost city of Chanchan, once the beating heart of the mighty Chimu Empire. Is that a pyramid? I think that’s a pyramid, a pyramid at Chanchan. Can I find answers inside the city walls as to why the children had to die? Built over a thousa…