yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Finding zeros of polynomials (1 of 2) | Mathematics III | High School Math | Khan Academy
[Voiceover] So, we have a fifth-degree polynomial here, p of x, and we’re asked to do several things. First, find the real roots. And let’s sort of remind ourselves what roots are. So root is the same thing as a zero, and they’re the x-values that make th…
Your Whole Goal Is to Not Quit - Courtland Allen of Indie Hackers
But yeah, why did you decide to start doing a podcast after the site was going? People were asking for it. It seemed like a good idea. I mean, the number of people who asked me to do a podcast was so much higher than people who asked for any other featur…
The Water of Lost Hills | Water & Power: A California Heist
MARK: Rafaela, I know you feel grateful. Yes. To The Wonderful Company, and they have done things that no farmer will do. Yes. There’s a park now. There’s– Yes, I know. - The roads are better. There’s some houses. But the wages are still minimum. And t…
BANNED Sega Ads!!!: Mind Blow 8
Meat flavored water and Japanese robot babies will someday rule the earth. Vsauce, Kevin here. This is Milo. Hey, it’s Mario. This is actually a Nintendo parody found in Sega’s Alex Kidd. But Nintendo paid the favor back in Donkey Kong Country 2 by stick…
Graphical impact of cost changes on marginal and average costs
In the last video, we numerically studied how changes in productivity or cost might affect your marginal cost, your average variable cost, your average fixed cost, or your average total cost. In this video, we’re going to think about it visually. So, we …
Will The Market Crash If Trump Loses?! #shorts
What Donald Trump has said, if he loses, is that there’ll be a depression, that there’ll be a market crash. What do you think of that? Ah, Donald being the Donald, you got to vote one way or the other based on policy because both sides are being absolutel…