yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Engineering with Origami
Engineers are turning to origami for inspiration for all types of applications, from medical devices to space applications, and even stopping bullets. But why is it that this ancient art of paper folding is so useful for modern engineering? Origami, liter…
Lecture 17 - How to Design Hardware Products (Hosain Rahman)
Very exciting! And thank you, Sam, uh, for having me. Sam and I have known each other for a long time because we were fellow Sequoia companies, and we met in the early days of when he was on his, uh, company journey. So it’s cool! So what he asked me to t…
Robinhood Just Got Cancelled - Again
What’s up you guys, it’s Graham here. So historically, they say that on average September is the worst month for the stock market, dating all the way back to 1950. Now whether or not that comes true for this month is yet to be seen, but I have to say the…
Khan Academy Ed Talks with Matt Townsley, EdD - Thursday, Feb. 10
Hello and welcome to ED Talks with Khan Academy. I’m Kristin Docero, the Chief Learning Officer at Khan Academy, and I’m excited today to talk to Dr. Matt Townsley, who is a professor and author of Making Grades Matter. We’ll be talking about all things g…
STOICISM | How to Worry Less About Money
If there’s something that stresses people out, it’s financial problems. On March 11th, 2020, the coronavirus outbreak was officially declared a pandemic. COVID-19 not only started to threaten people’s health on a global scale; it also severely affected th…
2008 Berkshire Hathaway Annual Meeting (Full Version)
[Music] Folks, this just in! It appears that Warren Buffett has struck a deal to trade jobs with daytime soap opera diva Susan Lucci. Buffett has reportedly negotiated a permanent spot on the cast of All My Children. Apparently, Ms. Lucci is en route to O…