yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Behind the Scenes Videos!
Hello Internet! Each final finished, precisely polished video you see stands atop a mountain of material you don’t. Books and papers and sometimes investigative travels; time lost and confused in the infinite diverging paths of the forests of all knowled…
Theorem for limits of composite functions: when conditions aren't met | AP Calculus | Khan Academy
In a previous video, we used this theorem to evaluate certain types of composite functions. In this video, we’ll do a few more examples that get a little bit more involved. So let’s say we wanted to figure out the limit as x approaches 0 of f of g of x. …
Secant line with arbitrary difference | Derivatives introduction | AP Calculus AB | Khan Academy
A secant line intersects the curve ( y ) equal to the natural log of ( x ) at two points with ( x ) coordinates ( 2 ) and ( 2 + h ). What is the slope of the secant line? Well, they’re giving us two points on this line. It might not be immediately obviou…
Miranda v. Arizona | Civil liberties and civil rights | US government and civics | Khan Academy
[Kim] You have the right to remain silent. Anything you say can and will be used against you in a court of law. We’ve become familiar with the Miranda Warnings given to suspects in police custody through movies and TV shows, but who was Miranda and what d…
Easy Photography Life Hack!
Okay, I just learned the greatest life hack. If you see something that you want to take a picture of, but you left your phone at home, don’t worry. Just do this: blindfold yourself for like 30 minutes, and then stare at what you want to take a picture of …
Steve Jobs in Sweden, 1985 [HQ]
[Music] Glad to meet you. [Applause] The doors have been locked and all of you that don’t sign up to buy computers will stay here, and we will bring back the singers. I am extraordinarily pleased to be able to be here with you. This is one of my perso…