yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Manatee Tooth Removal | Lil Joe Goes to the Dentist | Magic of Disney's Animal Kingdom
At the seas with Nemo and friends at Epcot. New faces appear every day, but old friends are never far away, like guest favorite Little Joe. This guy was found alone in the wild as a baby, but the team took him in and gave him the chance to flourish. I lov…
Hasan Minhaj on finding your gifts, being authentic, & understanding yourself | Homeroom with Sal
Hi everyone! Welcome to the Homeroom live stream! Sal here from Khan Academy. Very excited about today’s guest, Hasan Minhaj. I encourage everyone watching on Facebook or YouTube, if you have questions for Husso or myself, feel free to start putting those…
How To Get Excited About Life Again #Shorts
You don’t need a vacation to feel excited or refreshed about your life in the world. New things are waiting around the corner if you just open your eyes and look for them. Constantly challenge yourself to learn new skills, like maybe learning a new cuisin…
Positive and negative rotaion of points example
We’re told that point P was rotated about the origin (0, 0) by 60 degrees. Which point is the image of P? Pause this video and see if you can figure that out. All right, now let’s think about it. This is point P; it’s being rotated around the origin (0, …
Kinematics of Grasshopper Hops - Smarter Every Day 102
[Smarter Every Day theme music] Hey, it’s me Destin. Welcome back to Smarter Every Day. Today I’m at the Tambopada Research Center, it’s run by Rainforest Expeditions, and we’re gonna calculate the force that a grasshopper uses to jump with. First thing…
15 Signs Of True Success
Plenty of people pretend to be successful for social clout. Pretending to be successful has become a sort of international sport. But there are some signs that you can tell if someone is actually successful or not. In this video, we’re going over 15 signs…