yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
The Car Market Bubble Just Popped
What’s up you guys, it’s Graham here. So first of all, I got to say I am shocked that more people aren’t talking about this because we’re facing a huge problem in the used car market, and honestly, it’s a disaster waiting to happen. Like, we all know tha…
Kevin Systrom at Startup School SV 2014
Kevin: Thanks a lot for joining us today. Audience: Absolutely! Kevin: Thanks for having me. This is a nice big crowd. Audience: Yeah, this is quite a few people. Kevin: Well, we can just launch right in, of course. I guess you know the crazy thing ab…
Ilya Volodarsky - Analytics for Startups
Hi everyone! My name is Ilya. I’m one of the co-founders at Segment, and I’m here to talk to you about how to set up analytics and the analytics foundation to build your MVP and to measure these primary and secondary metrics. So this is going to be a lit…
Work and power | Physics | Khan Academy
Earlier, roller coasters used to start from a height with a lot of gravitational potential energy, which then got converted into kinetic energy as the coaster went down. But what you’re seeing here is an example of something called a launched roller coast…
How To Supercharge Your Execution Skill
The world belongs to those who act. If everyone would do what they say they would, we’d have flying cars by now. But we don’t. The average individual has very poor execution skills. They’re blocked by a lack of discipline, a mountain of procrastination, a…
World's Fastest Pitch - Supersonic Baseball Cannon - Smarter Every Day 242
Hey, it’s me, Destin. Welcome back to Smarter Every Day. You read the title of the video, didn’t you? You know what’s about to happen. Here’s the deal, though. I’ve got to explain it to you. This is not some dude trying to make an internet video. This is …