yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Solar Roads: Can Streets Become Giant Solar Panels? | National Geographic
[Music] [Music] There is a project in the United States called solar roadways, which consist of concrete slabs including the solar cells, plus tempered glass on top of it. There’s a quite similar project in the Netherlands called solar Road. A section on …
Choosing between its and it’s | The Apostrophe | Punctuation | Khan Academy
Hello Garans and hello Paige. Hi David! So, what are we working on today? Today, we’re going to talk about the difference between “its” and “it’s.” Oh, well, that sounds real tricky! Yeah, but we’ll be okay. Okay, so “it’s” with an apostrophe. So we ha…
Blacked out $25,000,000 private jet tour!
Because I really love the fabric; it’s super special. At home, I have even the same couch. We always say in the industry that a private jet should always be an extension of one’s home. It’s home away from home, right? Home away from home, right here! Abs…
Here is Everything We Don't Know (Extended)
[Music] This is green, this is red, and this is blue. But how can you tell what you’re seeing as blue is the exact same thing as what I see as blue? We’ve named the colors to give us a way to communicate and reference them. But in reality, there’s no way …
Kevin O'Leary | THE BEST INVESTMENT WATCHES YOU CAN BUY!!
[Music] Hi everybody, Mr. Wonderful here, and welcome to another episode of Wonderful on Watches, one of my favorite topics. In the background are gorgeous aquariums. I love the peace and the harmony of fish swimming while we talk about beautiful pieces o…
Ooshma Garg: What are some of the challenges you face as the CEO of your startup?
Okay, um, in the beginning one of the highs is just that you’re constantly innovating. Like, that 24⁄7 maker time is very precious to me. My contrast now, my day is like full of meetings. It’s like meetings, meetings, meetings, meetings, and then dinners.…