yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Metallic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Now the last type of bond I’m going to talk about is known as the metallic bond, which I think I know a little bit about because I was the lead singer of a metallic bond in high school. I’ll talk about that in future videos, but let’s just take one of our…
The Science Behind James Cameron’s Avatar: The Way of Water | National Geographic
I’ve had this romance with the ocean my entire life. When I was a kid, I aspired to become a diver so I could go and see this wonder and this beauty myself. Then I spent decades, you know, exploring and enjoying that world. The Way of Water was an opport…
Interpreting graphs with slices | Multivariable calculus | Khan Academy
So in the last video, I described how to interpret three-dimensional graphs. I have another three-dimensional graph here; it’s a very bumpy guy. This happens to be the graph of the function ( f(x,y) = \cos(x) \cdot \sin(y) ). You know, I could also say th…
Top 5 Most Valuable Principles #1
Embrace reality and deal with it. There is nothing more important than understanding how reality works and how to deal with it. The state of mind you bring to this process makes all the difference. I found it helpful to think of my life as if it were a g…
13 SIGNS YOU MIGHT BE UNDERVALUING YOURSELF WITHOUT REALIZING IT | STOICISM INSIGHTS
Imagine just for a moment that the most powerful tool for a meaningful, fulfilled life isn’t something you can buy, earn, or be given by others. It’s already within you, waiting to be discovered and harnessed. This isn’t just a thought experiment; it’s a …
Incorporating opposing viewpoints | Reading | Khan Academy
Hello readers! Let’s argue in writing. Argument is a kind of fight, but I think it is unwise to think of it as a one-way conversation. The best arguments do not plunge forward heedlessly; they do not steamroll opposition. Rather, they seek out opposing ar…