yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
The Jacobian matrix
In the last video, we were looking at this particular function. It’s a very non-linear function, and we were picturing it as a transformation that takes every point (x, y) in space to the point (x + sin(y), y + sin(x)). Moreover, we zoomed in on a specif…
Geometric series convergence and divergence examples | Precalculus | Khan Academy
[Instructor] So here we have three different series. And what I would like you to do is pause this video and think about whether each of them converges or diverges. All right, now let’s work on this together. So, just as a refresher, converge means that…
The ideal gas law (PV = nRT) | Intermolecular forces and properties | AP Chemistry | Khan Academy
In this video, we’re going to talk about ideal gases and how we can describe what’s going on with them. So the first question you might be wondering is, what is an ideal gas? It really is a bit of a theoretical construct that helps us describe a lot of wh…
How to Stop Procrastinating
The greatest hindrance to living is expectancy, which depends upon the morrow and wastes to-day. — Seneca When we procrastinate, we are immersed in future thinking and unable to do the work that we had planned to do in the present moment. The consequence…
This Rock Climbing Kid Has a Hidden Strength: His Super Mom | Short Film Showcase
The skill of just being disciplined, being able to stay on track and just fight, and even take a few knocks and get back up, and just keep, you know, on that path or whatever you choose in life, that’s a skill I think that’ll be with him forever. I think …
Don’t Worry, Everything is Out of Control | Taoist Antidotes to Worry
Our busy lives often lead to feelings of stress, exhaustion, and even burnout. Stress is one of the major causes of illness and can also lead to depression and anxiety. Luckily, the writings of ancient Taoist sages offer plenty of philosophical ideas that…