yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Secrets You Can Learn From Your Customers
And some point during this coffee session, the guy was like, “Hey, oh, you want my nose? You want to see my, would you like a gold mine? Yeah, for all of my thoughts, all of my everything.” [Music] Hello, this is Michael Seibel with Dotson Caldwell, and…
Dostoevsky - Never Lie to Yourself
In The Brothers Karamazov, Fyodor Dostoevsky wrote, “Above all, don’t lie to yourself. The man who lies to himself and listens to his own lie comes to a point that he cannot distinguish the truth within him, or around him, and so loses all respect for him…
Black Market Demand for 'Red Ivory' Is Dooming This Rare Bird | Short Film Showcase
In the pristine rainforests of Borneo, there’s a hidden battle between groups of poachers and wildlife photographers. They both share the same mission: finding the helmeted hornbill, an iconic bird pushed to the very brink of extinction due to poaching. […
Calculus based justification for function increasing | AP Calculus AB | Khan Academy
We are told the differentiable function h and its derivative h prime are graphed, and you can see it here. h is in blue, and then its derivative h prime is in this orange color. Four students were asked to give an appropriate calculus-based justification …
The impact of constitutional compromises on us today | US government and civics | Khan Academy
When you first learn about the Constitutional Convention in 1787 and the debates and the compromises, it’s easy to assume that, okay, that’s interesting from a historical point of view, but how does it affect me today? Well, the simple answer is it affect…
TAOISM | The Art of Not Trying
Those who stand on tiptoes do not stand firmly. Those who rush ahead don’t get very far. Those who try to outshine others dim their own light. — Lao Tzu How can we improve when we stop trying to improve? Many people waste their efforts trying to better …