yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
15 Life Lessons From the Richest Empires
Now, why would we want to learn anything from Empires that ruled a long time ago? They’ve fallen now, and if their goal was to last forever, well, they failed. They’re also controversial and highly criticized. So should we really look at the way they rule…
Story time: EXACTLY how I met my three mentors
I’m going to share the three people who have made the biggest impact on my life, who have been my mentors, exactly how I met them and how that happened. So let’s start here; we’re going to go old school. My first mentor I met when I was about 13 years ol…
Who Am I? | The Philosophy of Alan Watts
Who am I? Am I the mind? Am I the body that contains the mind? Am I a descendant of an alien race that, long ago, set foot on Earth? Am I created by God? The English philosopher, writer, and speaker Alan Watts believed that the most important question a h…
A Rare Look Into the Lives of North Koreans | Nat Geo Live
It’s fair to say that North Korea is one of the most isolated, least understood places on Earth. Part of the reason that it is so misunderstood, and nothing is known about it, is there have been very few photographs that have ever been taken there. (appla…
Coulomb's law | Physics | Khan Academy
We encounter so many different kinds of forces in our day-to-day lives. There’s gravity, there’s the tension force, friction, air resistance, spring force, buoyant forces, and so on and so forth. But guess what? Not all these forces are fundamental. Gravi…
Types of price discrimination
We have already introduced ourselves to the idea of price discrimination in other videos, and in this video, we’re going to try to classify the different ways that a firm might engage in price discrimination. So first of all, just as a review of what it …