yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
What If You Fall into a Black Hole?
Black holes are the most powerful and extreme things in the universe, and they’re wildly weird and complicated. What would happen if you fell inside one, and what are they? [Music] Really, first we need to talk about space and time. Space and time are t…
Ways to manage financial risk | Insurance | Financial literacy | Khan Academy
So, let’s talk a little bit about the different ways that you can manage risk. It’s generally going to fall into a few categories. You can obviously try to avoid the risk altogether or reduce it. You could say, “Alright, that risk is there, but I’m going …
The CIA's TOP SECRET Mind Control Drug
At the end of the Korean War, The New York Times published a gripping story detailing how returning American soldiers may have been converted by communist brainwashers. The story became widely popular. Some troops were allegedly confessing to war crimes, …
Why Do We Feel Nostalgia?
Hey, Vsauce. Michael here. Music. Why does music make us feel the way it does? Why does music make us wanna move? And why do songs sometimes get stuck in our heads? James May, from the YouTube channel Head Squeeze, thanks for the music. Pleasure. Why ca…
Who Inspired Wakanda’s Women Warriors? | Podcast | Overheard at National Geographic
Foreignly, I heard the term Dahomey Amazons throughout the years but never really thought much more about them other than they were this sort of mythical group of women who did amazing things. You might have heard of the Marvel superhero Black Panther. He…
If you can't focus, please watch this video…
Do you know why your brain is like a browser with too many tabs open? What if I told you that you’re just one funny cat video away from losing your focus completely? In this video, I will dive into a major culprit of focus. By the end of this video, you’l…