yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Andrea Ghez’s Black Hole Research Confirms Einstein’s Theory of Relativity | Short Film Showcase
Black holes are deceptively simple and yet incredibly complex. A black hole is a region of space where the pull of gravity is so intense that nothing can escape, not even light. We don’t have the physics to describe what a black hole is because it leads t…
Unit 731: Japan’s Hidden Experiment
Four to six weeks. It’s a duration of time that you and I probably take for granted. What can really happen in that time? Nothing, right? Maybe that’s a big project at work, or maybe how long you’d spend learning integrals in calculus. In a different per…
Identifying scale factor in drawings | Geometry | 7th grade | Khan Academy
So right over here, figure B is a scaled copy of figure A, and what we want to do is figure out what is the scale factor to go from figure A to figure B. Pause the video and see if you can figure that out. Well, all we have to do is look at corresponding…
Why Simplicity is Power | Priceless Benefits of Being Simple
Once upon a time, in a quiet mountain village lived a humble stonecutter named Taro. Every day, Taro would shape rocks into bricks and tiles. He was content with his simple life and found joy in his craft. One day, a group of wealthy merchants passed by. …
Modern Women Are Not What You Think - This Will Shock You
Speaker: What’s happened is the rise of social media and the rise of online dating and the rise of feminism has taught women that they are not to blame for any poor choices. Every poor choice is glamorized. So if you want to be a sex worker, it’s great. …
Article VII of the Constitution | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m learning more about Article 7 of the U.S. Constitution, which is the provision that specified the conditions for the Constitution to become law. It reads, “The ratification of the conventions of nine states…