yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Conditions for inference for difference of means | AP Statistics | Khan Academy
A food scientist wants to estimate the difference between the mean weights of eggs classified as jumbo and large. They plan on taking a sample of each type of egg to construct a two-sample t-interval. Which of the following are conditions for this type of…
Climate Change and the Migrant Crisis | Years of Living Dangerously
Nice to meet you. How big is this European migration crisis? Down, it’s big, and it’s getting bigger. We’re doing a story on the impacts of climate change on migration. Many of the people are fleeing conflicts; we just couldn’t believe that some weren’t …
How to Get the Raise You Deserve | Money Disputes With Shark Tank's Kevin O'Leary
Hi there! It’s me again, Mr. Wonderful, coming to you from the tumultuous world of money disputes. The stress, the bitterness, the heartache. I’m here to sweep all that baggage away by helping you find resolution. So let’s do just that. I’ve got a video h…
How The Stock Market Will Crash
What’s up, Graham! It’s guys here. So, as I’m sure we’re all aware by now, every single week there’s a new prediction that the stock market is going to come crashing down. It’s time to sell everything, and this time it’s for real. But this crash predictio…
these inventions changed the world..
The latrine, the porcelain throne, the Oval Office toilets… do I really need to say anything here? Before toilets, we would literally use buckets or just went into the forest or peed on a tree or something. We didn’t really have any efficient way of getti…
You Didn’t Know Mushrooms Could Do All This | National Geographic
There are so many things you can do with fungi, and this is what keeps us up at night. Fungi for food, medicine, textiles, fiber, packaging materials, even biofuel. Fungi just have this potential to unlock biological material that’s a waste product in our…