yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Khan Academy Ed Talks with Matt Townsley, EdD - Thursday, Feb. 10
Hello and welcome to ED Talks with Khan Academy. I’m Kristin Docero, the Chief Learning Officer at Khan Academy, and I’m excited today to talk to Dr. Matt Townsley, who is a professor and author of Making Grades Matter. We’ll be talking about all things g…
Non-congruent shapes & transformations
[Instructor] We are told, Brenda was able to map circle M onto circle N using a translation and a dilation. This is circle M right over here. Here’s the center of it. This is circle M, this circle right over here. It looks like at first, she translates it…
Interpreting slope of regression line | AP Statistics | Khan Academy
Lizz’s math test included a survey question asking how many hours students spent studying for the test. The scatter plot and trend line below show the relationship between how many hours students spent studying and their score on the test. The line fitted…
Journey into the Deep Sea - VR | National Geographic
We live on this incredible, unfamiliar blue planet. The ocean is this magical, complex, beautiful place, but almost nobody sees it. [Music] The ocean protects us; it feeds us. Yet few can see how beautiful and powerful that it can be. What we don’t see, w…
Ponzi Factor | V-Log 2 | Apple $1 Trillion Joke
Hey, this is time. It’s Saturday night, so that’s one a little more casual - it’s actually Saturday, whoo, Sunday morning now, 1 a.m. Clearly, I go out and party on Saturdays, and I said last time I’m gonna try to stay away from current events. But this t…
My advice to be successful if you’re a teenager watching YouTube right now…
What’s up you guys, it’s Graham here. So it seems like a large part of my audience are all teenagers or people like in high school. Sure, some in middle school or like people not quite 18. I get asked all the time, like what can I do when I’m still at hig…