yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
NEW Stimulus Details | FREE RENT & MORTGAGES
What’s up guys, it’s Graham here. So, as I’m sure we’ve all been following, the two point six trillion dollar stimulus is well on its way. People are finally beginning to receive their $1200 checks. Small businesses have exhausted all 250 billion dollars …
Productize Yourself
You summarized this entire tweet storm with two words: productize yourself. Productize and yourself. Yourself has uniqueness. Productize has leverage. Yourself has accountability. Productize has specific knowledge. Yourself also has specific knowledge in…
Uncovering Ancient Incan History | Lost Cities With Albert Lin
ALBERT LIN (VOICEOVER): Quinsachata Volcano last erupted only a few thousand years ago. AMELIA PEREZ TRUJILLO: This is pumice, volcanic rock. ALBERT LIN (VOICEOVER): I head for the summit with Peruvian archaeologist Amelia Perez Trujillo. We follow the …
Sources of loans/credit | Loans and debt | Financial Literacy | Khan Academy
So let’s talk a little bit about credit and lending. When I talk about credit, I’m literally just talking about someone’s willingness to lend you money or to actually lend you money. You’ve heard of a credit card; when you buy something with a credit card…
What is mastery learning?
[Narrator] Have you ever really tried to learn something and you just couldn’t? It can make you feel like you’re not so smart, right? Well, it’s not your fault and it’s not your teacher’s fault, it’s just our traditional approach to learning. We go thro…
What we've learned in 100 Episodes - Smarter Every Day 100!!
[party whistles] Hey it’s me Destin. Welcome back to Smarter Every Day. A very special Smarter Every Day. The 100th episode, but not only that, it kind of coincided with a million subscribers, so thank you very much for your support. And because of that, …