yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Prepositions of neither space nor time | The parts of speech | Grammar | Khan Academy
Hey Garans, we’ve talked about prepositions of time, and we’ve talked about prepositions of space. I couldn’t come up with a name for these because the following five prepositions are examples of what we would call prepositions that have connotations for …
Using units to solve problems: Toy factory | Working with units | Algebra I | Khan Academy
We’re told a factory makes toys that are sold for ten dollars a piece. The factory has 40 workers, and they each produce 25 toys a day. The factory is open five days a week. What is the total value of toys the factory produces in a day? Pause this video …
Ray Dalio Bets BIG on GOLD
This video is sponsored by Stake. Download the Stake app today and use the referral code AWC to receive a free stock when you fund your account. Details in the description. Ray Dalio has always been a pretty big believer in holding at least a little bit …
Unexpected Dark Matter Discoveries From Super Distant Quasars
Hello INF person, this is Anton, and today I wanted to discuss one of the recent studies that was actually able to investigate some of the most distant quers, or these really massive black holes and galaxies around them, from some of the farthest regions …
John Preskill on Quantum Computing
And what was the revelation that made scientists and physicists think that a quantum computer could exist? It’s not obvious, you know, a lot of people thought you couldn’t. Okay. The idea that a quantum computer would be powerful was emphasized over 30 ye…
Why NASA's Next Space Suits are not Pressurized to 14.7psi - Smarter Every Day 296
This is me trying to figure something out underwater. And those are NASA astronauts also trying to figure something out underwater. NASA is about to make a technical decision, and I want to try to explain why it’s so important. Like, if you could design …