yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Importing modules | Intro to CS - Python | Khan Academy
If you were building a bike, you would probably go off and get a seat, a set of handlebars, a set of tires, and then assemble those pieces together. You wouldn’t harvest your own rubber and try and forge a tire from scratch. With programming, we do the sa…
The Hard Conversations Founders Don't Want to Have
I think so much about being a YC partner is like, is exactly that. Like I’ve made all these mistakes before I go. And the only thing that I could say is I know the way out. This is Michael Seibel with Dalton Caldwell at YC. We often have to have challeng…
Uncle Tom's Cabin part 3
Hey Kim, hey Becca. So, we’ve been talking about Uncle Tom’s Cabin, uh published in 1852 by Harriet Beecher Stowe, and said to have been one of the main causes of the American Civil War. So remind me again what Uncle Tom’s Cabin was actually about. So, U…
Non-congruent shapes & transformations
[Instructor] We are told, Brenda was able to map circle M onto circle N using a translation and a dilation. This is circle M right over here. Here’s the center of it. This is circle M, this circle right over here. It looks like at first, she translates it…
Solving proportions 2 exercise examples | Algebra Basics | Khan Academy
[Instructor] We have the proportion ( x - 9 ) over ( 12 ) is equal to ( \frac{2}{3} ), and we wanna solve for the ( x ) that satisfies this proportion. Now, there’s a bunch of ways that you could do it. A lot of people, as soon as they see a proportion li…
Celsius Made His Thermometer Upside Down
DEREK: How did Celsius define his scale? MICHAEL: Uh… He took the temperature water freezes at and said that’s zero and then he took the temperature it boils at and says that’s a hundred. And he figured a hundred was a good amount of demarcations to make…