yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
More Questions Than Answers | LA 92
I think it is devastating to the image of this city and especially to our police department. JOHN MACK: It’s very apparent that some– not all, but some– of those officers are clearly out of control. And they have to ultimately be willing to take a good, …
8 Hiking Essentials You Shouldn’t Leave Home Without | National Geographic
Action! Fellow adventurers, thrill seekers, and aficionados of the great outdoors, lend me your ears. I’m Starlight Williams, digital editor at National Geographic, amateur peak seeker along the northeast coast, and budding glamper. From trusty hiking pol…
Why you must stay positive
You feel down or let down by other people. Things fall apart, but you really can’t let your outer self show that stuff. You have to be able to sort of just rub it off, brush it off your shoulder, man. Move on, because you can’t let negative energy be spre…
Scaling & reflecting absolute value functions: graph | High School Math | Khan Academy
Function G can be thought of as a stretched or compressed version of f of x is equal to the absolute value of x. What is the equation for G of x? So you can see f of x is equal to the absolute value of x here in blue. And then G of x not only does it look…
Research on Mt. Erebus | Continent 7: Antarctica
I love doing my job. I get to take people on all these fantastic adventures. It’s a rough place; neither you’re safe, and you come home, or you screw up, and you don’t come home. We have to be a little bit more minimal with the stopping, or else we’re gon…
Jason Silva's Origin Story | Origins: The Journey of Humankind
[music playing] JASON SILVA: I think that I was a restless kid, a very creative but restless kid that wanted answers. So I was afflicted by the bug of question and questioning everything. And that inquiry sent me to beautiful spaces of mind and imaginat…