yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Why I opened the first private jet showroom in the world!
The reason I built the first and only aviation showroom in the world is because nobody else has. I had to be different. Everybody in our industry today lives off a mobile phone and a laptop; that’s their business, that’s their office. To me, it just doesn…
Surviving the Storm - Behind the Scenes | Life Below Zero
We are here to document the lives of people living in Alaska. The harsh reality is the environment we’re up against. It makes it tough to do our job. Get out of there, working on Life Below Zero can be very dangerous. Guns here, cameras here, never know w…
Autumn in Canada | National Geographic
What I love about this trip is that it’s an opportunity to explore places that I haven’t had a chance to explore before. We are setting out from Toronto, but we’re taking the slow road up through Muskoka, cross through Algonquin Park, through the Ottawa V…
What happens when 2 Weedeaters Hit Each Other? (28,000 fps SLOW MOTION) - Smarter Every Day 255
Hey, it’s me, Destin. Welcome back to “Smarter Every Day.” We’re at that magical moment where you build something in the garage, a culmination of a week and a half of effort, and then you kind of all have your hands in your pockets. This is Jeremy filming…
Michael Burry's Warning for the Index Fund Bubble in 2023
Do you happen to own index funds as a part of your stock portfolio? I do. My YouTube buddies do. My accountant does. Heck, even my old school friends do. Well, what if I told you the famous market tracking index fund might be fueling a massive stock marke…
Is Humanity Inherently Evil? | The Story of God
I’ve come to meet Baptist Reverend and theologian Cutter Calloway to find out whether original sin means we are all evil at heart. “Pleasure to meet you.” “Thank you, have a seat.” “Thank you. Which book were you reading?” “The first few chapters of G…