yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Dihybrid cross and the Law of Independent Assortment | High school biology | Khan Academy
In this video, we’re going to build on our understanding of Mendelian genetics and Punnett squares by starting to think about two different genes. So we’re going back to the pea plant, and we’re going to think about the gene for pea color and the gene for…
Peru Orphanage Update 2017 - Smarter Every Day 183
I can’t tell if it’s focused. Stay right there. Hey! It’s me, Destin. Welcome back to Smarter Every Day. This is my wife, Tara. My better half. [laughs] Every year in December, I make a video about an orphanage in Peru called Not Forgotten. Tara went down…
Rewriting expressions with exponents challenge 1 | Algebra 1 (TX TEKS) | Khan Academy
So we have this pretty complicated, some would say hairy, expression right over here. What I want you to do is pause this video and see if you can simplify this based on what you know about exponent rules. All right, now let’s do this together. There’s m…
Safari Live - Day 300 | National Geographic
And out of this afternoon, a Craig is on camera with me, and as you may have gathered, he does a little bit of a damp start to our sunset Safari. I’m a soaked, the jackals soaked, Craig is actually relatively dry back there. The rest of us are fairly… the…
The Middle colonies | Period 2: 1607-1754 | AP US History | Khan Academy
Over the course of the 1600s, the English continued to settle along the eastern seaboard of North America. Now, we’ve already talked about the settlements at Virginia and those of Massachusetts, and a little bit about the settlement of New York, which was…
The Mother Of All Crashes Is Coming | Michael Burry’s Final Warning
What’s up guys, it’s Graham here. So, I recently came across a video from the channel New Money with a rather ominous title that instantly got my attention: “Michael Burry’s Warning for the 2022 Stock Market Crash.” This was a deep dive into the impending…