yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
Divers Find a Wreck 90 Meters Down | Drain the Oceans
It is a very deep dive with a lot of repercussions that come up too fast. Bubbles would form inside your blood, inside your tissues, and cause ill effects. To get to 90 meters, you’d be looking at 4 or 5 minutes to get down there. It’s very dark because y…
Buffett & Munger Expose Investment Lies: Real Returns vs. Pure Fiction
Speaker: We don’t formally have discount rates. I mean, every time I start talking about all this stuff, Charlie reminds me that I’ve never prepared a spreadsheet, but I do. You know, in in effect, in my mind, I do. But uh we are going to want to get a si…
The Moment kurzgesagt Changed Forever
Hey you, so nice of you to join us! We want to tell you about something that changed kurzgesagt forever. Kurzgesagt started out as a small-scale passion project. But creating animated science videos that are free for everyone doesn’t pay the bills – DAMN …
10 Good Problems You Want To Have
Everybody’s got problems, but you know not all problems are the same. There are some problems you actually want to have because they’re the indicator of a good life. When you take things for granted, you forget the good things that life has offered you. …
NEW Apple Credit Card 2019: Rumors and Breakdown
What’s up you guys? It’s Graham here. So the credit card community has been pretty quiet lately. Sign-up bonuses are dwindling, Chase Sapphire is cutting back on some of their benefits, and I thought I was done making credit card videos like this because…
Second partial derivative test
In the last video, we took a look at this function ( f(x, y) = x^4 - 4x^2 + y^2 ), which has the graph that you’re looking at on the left. We looked for all of the points where the gradient is equal to zero, which basically means both partial derivatives …