yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
15 Books That Will Change Your Perception of Reality
Last Saturday, we made a video on ways to become lifelong learners. And one way to achieve that is to have an annual reading list. The average American reads around 12 books a year. That’s one a month. We’ll give you 15 to start with for next year. Welco…
2015 AP Calculus AB/BC 1c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
All right, part C. At what time ( t ) where ( 0 \leq t \leq 8 ) is the amount of water in the pipe at a minimum? Justify your answer. All right, well, let’s define a function ( w ) that represents the amount of water in the pipe at any time ( t ), and th…
YC Women in Tech: Breaking Into Product
All right, hi everyone! It’s, uh, thanks for joining us today. I’m Captain Yala. I’m excited to have you join us for our work at a startup panel on getting into product. We have three PMs with us today and will be joined also by YC alumni Helena Merk, and…
Current | Introduction to electrical engineering | Electrical engineering | Khan Academy
All right, now we’re going to talk about the idea of an electric current. The story about current starts with the idea of charge. So, we’ve learned that we have two kinds of charges: positive and negative charge. We’ll just make up two little charges like…
How to Value a Stock like a Wall Street Analyst | Discounted Cash Flow and Comps
Wow! Do I have a special video for you today that will help you learn a ton about investing. This video is going to cover how to value a stock like the pros do to help you better identify stocks to buy. Let’s jump right into the video. There are two ways…
Commodity money vs. Fiat money | Financial sector | AP Macroeconomics | Khan Academy
Let’s take a look at a United States one dollar bill. What is it that gives this thing value? You can give it to people and get back, you know, food that you can eat or things that you can use and things of hard value. But what is it about this little pie…