yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fractional powers differentiation | Derivative rules | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we have ( H(x) ) is equal to ( 5x^{1/4} + 7 ) and we want to find what is ( H' ) of 16, or what is the derivative of this function when ( x ) is equal to 16.

And like always, pause this video and see if you can figure it out on your own.

All right, well let's just take the derivative of both sides of this.

On the left-hand side, I'm going to have ( H'(x) ) and on the right-hand side, well, the derivative of the right-hand side, I can just take the derivative of ( 5x^{1/4} ) and add that to the derivative with respect to ( x ) of 7.

So the derivative of ( 5x^{1/4} ) well, I can just apply the power rule here.

You might say, "Wait, wait, there's a fractional exponent," and I would just say, "Well that's okay, the power rule is very powerful."

So we can multiply ( \frac{1}{4} ) times the coefficient, so you have ( 5 \cdot \frac{1}{4} x^{1/4 - 1} ).

That's the derivative of ( 5x^{1/4} ), and then we have plus 7.

Now, what's the derivative of 7 with respect to ( x )?

Well, seven doesn't change with respect to ( x ); the derivative of a constant, we've seen this multiple times, is just zero.

So it's just plus 0.

And now we just have to simplify this, so this is going to be ( H'(x) ) is equal to ( \frac{5}{4} x^{-3/4} + 0 ).

So we don't have to write that.

And now, let's see if we can evaluate this when ( x ) is equal to 16.

So ( H'(16) ) is ( \frac{5}{4} \cdot 16^{-3/4} ).

Well, that's the same thing as ( \frac{5}{4} \cdot \frac{1}{16^{3/4}} ), which is the same thing as ( \frac{5}{4} \cdot \frac{1}{(16^{1/4})^3} ).

And so what is this?

( 16^{1/4} ) is 2, and then you cube that.

2 to the 3 power is 8.

So that's 8, so you have ( \frac{5}{4} \cdot \frac{1}{8} ), which is going to be equal to ( \frac{5 \cdot 1}{4 \cdot 8} ).

And then ( 4 \cdot 8 ) is 32, and we are done.

More Articles

View All
World's Roundest Object!
Can I hold it? Only if you promise to be really, really careful. I promise I will be so incredibly careful. I will be incredibly careful with it. I promise. So, it’s slippery, be careful. Alright, are we ready? I’m about to touch a 1kg sphere of silicon-…
Retire Early & Do These 15 Things
Retirement is not an age; it’s a number. When you hit your number, you can choose to retire. That number is when your investments generate at least 20 percent more than your expected cost of living. Yet, most people still look at retirement as an age mile…
Dilations and properties
We are told that quadrilateral ABCD is dilated about point P. So, this is our quadrilateral that’s going to be dilated around point P, and then they ask us some questions: Are the coordinates of the vertices preserved? Are corresponding line segments on t…
15 Ways to Master the Art of Decision Making
Making decisions is an essential life skill, and mastering it can impact your life, success, and happiness. Decisions, be they big or small, can shape our paths more than we can imagine. They determine what jobs we choose, the relationships we build, and …
Don’t Rely on Credibility Stamps
There are a lot of institutions in our society today that are relying upon credibility stamps. They used to be how you gain credibility in society. So, if you were a journalist writing for the New York Times or Washington Post, then you had the masthead o…
A Traveling Circus and its Great Escape | Podcast | Overheard at National Geographic
So, as I was driving around, I just noticed the big red and yellow big top in the distance, in the middle of essentially a paralyzed, frozen entire city. When I saw it, I thought to myself, “Well, I wonder what they’re doing?” That’s photographer Tomas S…